Stories tagged CERN

Sep
20
2011

There’s been some buzz about the relationship between clouds and climate recently, prompting Andrew Revkin of the New York Times’ Dot Earth blog to get his panties in a twist about the “…over-interpretation of a couple of [scientific] papers…”

What gives? I wanted to know too, so I’ve done a bit – ok, a lot – of research and this is what I can tell you: The heart of the discussion is not whether there is a cloud-climate connection (that’s clear), but rather over what that relationship behaves like. There are at least three possible theories, but before we get to those, let’s review some important background concepts.

Gimme the Basics First

Cloud Formation

First, scientists think of air as units of volume called air masses. Each air mass is identified by its temperature and moisture content. Clouds are basically wet air masses that form when rising air masses expand and cool, causing the moisture in the air to condense. You can see the process in action yourself just by exhaling outside on a cool morning. The Center for Multiscale Modeling of Atmospheric Processes has a webpage to answer your other questions about clouds.

Earth’s Energy Budget
Earth's energy budget: Incoming solar energy is either absorbed (orange) or reflected (yellow).  Outgoing energy is radiated (red).  The arrows show the direction and magnitude of movement where thick arrows signify bigger movements.
Earth's energy budget: Incoming solar energy is either absorbed (orange) or reflected (yellow). Outgoing energy is radiated (red). The arrows show the direction and magnitude of movement where thick arrows signify bigger movements.Courtesy NASA

Energy from the Sun is essential for life on Earth. Let’s pretend the Earth has an “energy budget” where solar energy is like money, absorption is like a deposit, reflection is like a transfer, and radiation is like a withdrawal. It’s not a perfect analogy, but it’ll work for starters: Most of the incoming solar energy (money) is absorbed by (deposited into) the ocean and earth surface, but some is absorbed or reflected (transferred) by the atmosphere and clouds. Most of the outgoing energy is radiated (withdrawn) to space from the atmosphere and clouds. The figure to the right illustrates this process.

The Greenhouse Effect

Thanks to the greenhouse effect, our planet is warm enough to live on. The greenhouse effect occurs within the earth’s energy budget when some of the heat radiating (withdrawing… remember our budget analogy from above?) from the ocean and earth surface is reflected (transferred) back to Earth by greenhouse gases in the atmosphere. Greenhouse gases include carbon dioxide, methane, and water vapor. This National Geographic interactive website entertains the concept.

Climate Change

Climate change is occurring largely because humans are adding more greenhouse gases to the atmosphere. More greenhouse gases in the atmosphere means more heat reflected back to earth and warmer temperatures. Warmer temperatures might sound pretty good to your right now (especially if you live in Minnesota and could see your breath this morning as you walked to school or work), but it’s not. Why? Check out NASA’s really great website on the effects of climate change.

Alright, already. What’s the climate-cloud relationship?

From what I can tell, there are three possible theories about the climate-cloud relationship:

  • Clouds actively drive climate change. This is a linear process where clouds reflect too much heat back to Earth, which increases the average global temperature and causes climate change.
  • Clouds passively blunt climate change. This is a cyclical process where more climate change includes increasing average global temperature, which increases average global evaporation, which creates more clouds. More clouds absorb more heat, keeping the average global temperature from rising even faster and lessening climate change. This slows down (note: it does not stop) the rate of climate change.
  • Clouds passively amplify climate change. This is a cyclical process where more climate change includes increasing the average global temperature, which increases average global evaporation, which creates more clouds. More clouds reflect more heat back to Earth, which raises the average global temperatures and worsens climate change. This speeds up the rate of climate change.
  • So which is it? Probably NOT Theory #1. Maybe Theory #2… or maybe it’s Theory #3? Scientists aren’t quite sure yet, so neither am I, but the evidence is stacking against Theory #1 leaving two possible options. The next big question seems to be surrounding the size of the effects of Theory #2 and Theory #3.

    Using what you just read about cloud formation, the earth’s energy budget, greenhouse gases, and climate change (Woah. You just learned a lot!), what do you think? What’s the climate-cloud relationship?

    If you want, you can read more about what scientists are saying about the climate-cloud relationship here:

Nov
09
2009

A killer agent from the future: Like the Terminator, but with bread!
A killer agent from the future: Like the Terminator, but with bread!Courtesy Hillarie
So, I’m sure y’all have heard the news by now. The Large Hadron Collider, the largest and most elaborate scientific device ever built, has broken again. And it never even got the chance to end the world.

See, many people believe that the LHC’s attempts to catch a glimpse at the forbidden knowledge of the universe could, like a nerd’s efforts to peek into a locker room of large and aggressively athletic members of the opposite sex, go terribly wrong. Earth-endingly wrong. Sure, pretty much everyone who knows anything about it says that the LHC really isn’t dangerous in that way, and the odds that it would cause a chain reaction that would destroy the world are about the same as its chances of creating an army of teenage mutant ninja turtles. (There simply aren’t enough karate-practicing teenage turtles out there to mutate!) But that doesn’t seem to matter, because every time they try to turn that sucker on, something goes wrong, and we keep getting robbed of our first row seats at the end of the world (or, alternately, our seeding in the ninja reptile tournaments).

Do you know what killed the project most recently? I think you do, if you read this post’s headline. A bird. A little bird dropped its delicious toast on a piece of outdoor equipment (most of the LHC is deep underground). Presumably it was a bird, anyway. Whatever the case, a mystery slice of baguette found its way to some important equipment that was not baguette-proof, causing the machine to rise a few important degrees in temperature.

The damage caused to the machine wasn’t catastrophic. It shut down as the temperature in the circuit increased, which is a good thing, because if the LHC had been fully operational at the time, such an increase in temperature could have caused the superconducting magnets in the particle accelerator to become less-superconducting, and then all that energy from the near-light speed particles would… crash. Boom. But that didn’t happen, and the LHC should be up and running this winter.

Or…

A month ago, the internets were alive with discussion over the theory that the Large Hadron Collider was being sabotaged… by the future!

Naturally I ignored this news, because Science Buzz doesn’t credit nonsense like this with attention, and, what’s more, I’m familiar with the concept of someone at one point in time sabotaging his self at another point in time, and I know that it only goes the other way. Trying drinking something named after a cartoon at the end of an evening, and you’ll see what I mean.

I don’t totally get the idea behind this time travel sabotage theory, but the basic premise is that the universe, or “God,” or the fundamental forces of physics, or whathaveyou, aren’t into the possibility that the LHC could create a Higgs Boson. The Higgs is an important theoretical particle that sort of… ties the room together, if we’re calling the whole universe a room. Experiments at the LHC are trying to create conditions in which a Higgs might be observed. However, say a couple of respected scientist dudes, it could be that the Higgs is so “abhorrent to nature” that its creation would send ripples back in time to prevent it from being created.

Leaving aside the exact mechanics of time ripples, let’s consider what’s happening here. As we all know, while killing your own grandfather is often temptingly within reach, going back in time to kill your own grandfather is impossible. It could just be that no one is owning up to doing it, but the situation also describes a paradox: if you were to travel back in time to kill your grandfather, he couldn’t have created your mom or dad, who, in turn, couldn’t have created you, so you couldn’t go back in time to kill him, so… you get the idea. One might think that the universe attempting to undo the creation of a Higgs boson presents a similar paradox—if the creation of the boson is what causes it to destroy the equipment before it can be created, it would never be created, and therefore couldn’t destroy the equipment that creates it. Bleh. On the other hand, the scientists say, while you can’t kill your grandpa in the past (darn!) you can, say, push him out of the way of a speeding bus. Yay! (Unless the event of your grandpa’s bus-related death was the sole inspiration for your time traveling adventures.) The setbacks in the LHC’s operations, say the theorists, could be the universe trying to push us out of the way of a speeding bus, as it were. But what about the Higgs is so abominable? They aren’t sure about that.

It seems to me that there are still some brain-twisting complications in that theory. Cause and Effect, I think, are going to have difficult time sorting out whose clothes are whose in the morning. But… come on! A bird dropped some bread on the LHC! Since when do birds drop things on things? It has to be time-traveling mischief.