Stories tagged Future Earth


Sweet Mongolian ice: What can't it do?
Sweet Mongolian ice: What can't it do?Courtesy Nswanson
Wait, JGordon!! Before we go any further, I have something to ask you.

Yes, JGordon?

How is ice our ancient friend?

Because it soothes our hot tempers, and it makes strong drinks more palatable.

And hotness? Why is it our enemy?

Because it makes us uncomfortable when we have it, and it makes us feel unattractive when we don’t.

I see. But don’t you think that was a long title for a blog post?

Maybe. Don’t you think that anyone whose time is at all valuable will have stopped reading by now because of this needless discussion?


OMG! What were we even talking about? I’m a little out of sorts because I was up all night killing the rats in my apartment. You think that’s weird? How about this: this morning, there were no dead rats to be found! It could be that they were only playing dead, or it could be that, like Obi-wan Kenobi, striking them down only caused them to become more powerful than I could possibly imagine, and also to vanish.

Or it could be that too much heat and not enough cooling ice in the apartment caused me to hallucinate the whole episode. However could that be remedied?

Well, the country of Mongolia has an idea. Or, more specifically, it’s capital city, Ulan Bator, and a local engineering firm have an idea: create mini-glaciers to place around the city. The idea behind the mini glaciers isn’t so much to prevent rat hallucinations (although that’s definitely a bonus) as it is to combat the effects of global warming and the city’s urban heat island (cities, with all their paved surfaces and heat-absorbing materials, tend to heat up more than the surrounding countryside). This could reduce the need for energy-hungry air conditioning in the city. The melting ice could potentially also be used to supplement the area’s drinking water and irrigation needs.

But how are the sons and daughters of the Great Khan going to pull this off? You can’t just hallucinate a gigantic block of ice into being. I should know.

The plan is to make a sort of mini-glacier naturally in the winter, using river ice. Typically, ice on a body of water won’t form more than a few feet thick, because at that point the ice itself insulates the water below from the cold above. But in situations where the water can be forced up through cracks or holes in the ice, it will form more ice on top, adding layers until the ice is many meters thick. These giant sheets of ice, called “naleds” or “aufeis” can last well into the following summer, as they slowly melt away.

The Mongolian engineers are planning on helping naled formation along by regularly drilling holes in river ice, so water can flow more freely up to be frozen. The block or blocks of ice produced will then be transported to the city, where they will … be cool, I guess.

The project will begin this winter, and if it’s successful, it could be a model for small-scale geoengineering (if that’s not an oxymoron) in northern cities as global climate warms. While glaciers and permafrost area will likely shrink, annual naled formation will continue. The project engineers think that naleds could also be used to actually repair areas of damaged (thawing) permafrost.

The articles on the project don’t get very specific on the size or placement of the naleds, but I suppose it’s also possible that, if they cover enough area, they would increase the city’s albedo—objects with high albedo reflect more light and absorb less of it, which means that they will heat up less in sunlight.

I’m afraid that my hot apartment hallucinations will force this project out of my memory by tomorrow, but it would have been interesting to see what sort of results come from it, and whether other countries pick the idea up as a cost effective method for dealing with rising summer temperatures. But I’ll leave that up to you, Buzzketeers. And to you, JGordon, my hot friend.


The most shocking thing I learned at NASA's Earth Ambassador training at Goddard Space Flight Center last month was that only about half of TV weather reporters have degrees in meteorology, many of them have almost no science background, and that around a quarter of them think that global warming is a scam.

Joe Witte, the meteorologist who spoke to our group, is a PhD candidate at George Mason University in their Climate Change Communication program. The school's study of almost 600 weather forecasters in 2010 highlighted the huge division between climatologists (scientists who study long-term climate change) and TV meteorologists, who report on weather changes over relatively short periods.

Meteorologists are not currently required to receive education on climate science, although the American Meteorological Society affirms that warming is happening and that it is probably mostly due to human activity. Climate change is a hot topic among weather forecasters. Many who believe in it are afraid to speak up on air for fear of losing valuable advertising dollars.

According to Joe Witte, only around 10% of all TV stations have a science reporter on their payroll. The public perceives weather reporters as the scientists on their news programs, regardless of their science background.

If we can support the education of meteorologists about climate change and give them access to media-friendly resources available to them from trusted sources like NASA, we'll be taking a huge step in public education about climate change. You don't have to be a scientist to understand climate change, but you do need access to reliable information about it.

When a politician, or an environmental institution speaks, everyone already knows what they're going to say, but when a weather reporter steps in front of a camera, people listen.


What do a banana and a chunk of coal have in common? Carbon!

Dr. Peter Griffith, Director of NASA's Carbon Cycle and Ecosystems office, spoke to twenty of us training to be Earth Ambassadors for NASA about why it's important to teach people about the way carbon moves around on our planet, in order to help them understand climate change.

He showed us this fantastic video that describes the Carbon Cycle on earth and describes how "young, fast carbon" like that in a banana differs from "old, slow" carbon, like that in coal and other fossil fuels.

See video

Dr. Griffith also described how you can tell the difference between objects containing old carbon and young carbon by looking at the radioactive decay of carbon 14. Carbon in its normal state is called carbon 12, or C12. However, cosmic rays, like those from the sun, convert some atmospheric carbon into a slightly radioactive form called carbon 14, or C14. Over time, this carbon decays back into Carbon 12.

All living plants and animals contain some C14, since they constantly take in atmospheric carbon dioxide.

Fossil fuels like coal and oil, which have been underground for millions of years, contain only C12 (fully decayed Carbon,) while a banana still contains some C14 from atmospheric carbon dioxide the banana tree absorbed.

It is not surprising that the carbon downwind of power plants burning coal is mostly C12. Trees can also lock up carbon in their trunks and branches in for many years.

The carbon released by burning fossil fuels and setting tropical forests ablaze is carbon that would naturally have remained "locked" up. Human activities like these are creating an excess of long-lived carbon dioxide gas in the atmosphere and are causing our world's climate to warm.

NASA and other scientists are working hard to study the science of climate change. How our planet and its inhabitants will respond to the challenges resulting from this change remains to be seen.


Sometime on or around October 31st, the world's population will hit seven billion people.

Population map: A map from the Worldmapper World Population Atlas: (c) Sasi Research Group, University of Sheffield
Population map: A map from the Worldmapper World Population Atlas: (c) Sasi Research Group, University of SheffieldCourtesy / CC BY-NC-ND 2.0

(There are a lot of challenges to supporting seven billion people. Want to know more about that? Check out the University of Minnesota's Institute on the Environment, where folks are working to find solutions to some of those problems.)

That's all fascinating and all, but...what about me? Luckily, the BBC has come to the rescue with a lovely little interactive that's, well, all about me. Or you. Whatever.

For example, according to the BBC calculator,

  • At the time of my birth, I was the 3,840,942,641st person to live on Earth.
  • And the 78,068,048,685th person to live since history began.
  • This morning, the United States has a population of 311,284,287 people,
  • In the US, there are 484 births, 288 deaths, and a gain of 113 immigrants every hour, for a total average yearly population growth of 0.9%. (The country with the fastest growing population is Qatar, experiencing an increase of 514 people every day. The country with the fastest shrinking population is Moldova, experiencing a decrease of 106 people every day.)
  • As a woman in the United States, I can look forward to an average life expectancy of 80.5 years. Men in the US, however, enjoy an average life expectancy of only 75.4 years, dragging the US total average down to 78 years. Thanks, men. (The Japanese have the longest average life expectancy in the world, at 82.7 years, while folks in the Central African Republic have an average life expectancy of only 45.9 years.)

Not too shabby!

To give you a sense of just how fast our population is growing, here's a crazy little fact: by mid-century, the world's urban population will equal the size of the world's global population in 2004. Wow. Cities are efficient, and concentrate us so that we can use land for other purposes, but they're also ecological hotspots. Curious about how your household measures up? Try the household flux calculator, or check out the Q&A with Scientist on the Spot Daniel Nidzgorski.

Not enough for you? Check out "Seven billion in seven stories" and "Will people numbers keep rising?"

Oh, and let us know: #whatsyournumber ?


With the exception of the Family Christmas Flu of 2002, I haven’t stopped to appreciate the toilet much in my life. However, Dr. Richard Alley’s presentation at the Science Museum of Minnesota on October 6th really made me think about toilets – and the waste we flush – like I never had before.
Authentic chamber pot: Nothing pretty about it
Authentic chamber pot: Nothing pretty about itCourtesy Evelyn Simak

Today, we can’t imagine living without toilets or indoor plumbing, especially in populated areas for extended periods of time. Gone are the days of the chamber pot, the daily hurling of human waste from your window into the street below, and the pervasive stench that resulted.

It’s really incredible to think about how society went from chamber pots to toilets. I mean, there is a HUGE amount of technology development, public policy, and civil engineering involved in the invention, installation, and maintenance of plumbing infrastructure. (You never thought about it either, did you?) You have to invent the plumbing fixtures, convince the government and the public that it’s a necessity, perfect the manufacturing process, install miles of underground pipes, build collection and treatment plants, and continually upkeep the entire system.

The daunting obstacles must have made indoor plumbing seem virtually impossible back in the day, but we did it anyway, which raises two really great questions: How and why?

How we made the switch from chamber pots to toilets is less important than why we made the switch because we probably wouldn’t have bothered to figured out how if we didn’t have a dang good reason why to put in all the effort. Like grandma says, “Where there’s a will, there’s a way.”
Authentic toilet: Something pretty about it.
Authentic toilet: Something pretty about it.Courtesy 13th Street Studio

We put in the effort to move towards toilets because we realized we couldn’t keep living with chamber pots. Chamber pots were unsightly, smelly, and really bad for public health. After we became convinced of the necessity of toilets, we figured out how to do it and we even put up with the disruption their adoption created. A few generations later and we can’t imagine living any other way.

Dr. Alley says we’re now on the cusp of our own epic Chamber-Pot-to-Toilet story.

Today, we can’t imagine living without fossil fuels as an energy source, but our grandchildren might not be able to imagine what it’s like living without renewable energy. Chamber pots and excrement are like fossil fuels and pollution: unsightly, smelly, and bad for public health. Hopefully, like with toilets, we’ll eventually realize we can’t keep living in our own filth and we’ll find a way to widely adopt renewable energy to replace fossil fuels.

According to Dr. Alley’s presentation, we already have the technology to capture enough renewable energy to cover the world’s current energy usage (15.7 terawatts) with some to spare, and the amount of renewable energy available for capture in the future is simply staggering. That means we should also be able to serve populations that do not currently have energy access and provide energy for our future's growing global population – all sustainably! Sure the technology development, public policy, and civil engineering involved in switching to a new energy system is daunting, but it can't be much longer until we realize it's a necessity worth the effort.

You can watch segments of Earth: The Operator’s Manual online (including Dr. Alley's 30 second introduction of himself, check out 1:23-1:53) and even read the annotated script. Segment 9 of Chapter 3 (beginning at page 98 of the annotated script), Towards a Sustainable Future, covers the details of which renewable energy sources we could use to create a global sustainable energy portfolio.

Who’da thunk it? But you can mine sand. Not just for beaches, but for hydrofracking (or 'hydraulic fracturing').
Silica sand mine: Germany, Spring 2007
Silica sand mine: Germany, Spring 2007Courtesy Songkran

[Side bar: Hydrofracking is a method of squeezing natural gas from certain special rocks. It’s expensive and has environmental consequences, but increasing demand coupled with oil and gas prices being what they are (high!) we’ll be hearing a lot more about the extraction technique. This Strib article calls silica sand "the new gold."]

And… back to sand mining. Silica sand is used by drillers in hydrofracking. According to this blog post, Red Wing, MN is primo silica sand mining land, so it’s no wonder Windsor Permian, a Texas drilling company, wants in.

A sand mining pit could create a lot of local jobs. Or it could cause lung diseases, including cancer, in the local population. Or both. Or neither.

Yikes. What’s a person to think? On the one hand, people need jobs and affordable energy. On the other hand, the very same people need good health and a stable environment.

As the global population rises in absolute size and affluence, we’ll face more difficult decisions like this one. Looking for solutions that benefit both people and the environment will characterize the future of life on Earth.

You've probably heard that we (the Earth's 7 billion humans) are headed towards a global population of 9,000,000,000 (billion!) people. And because you're smart, you've probably wondered how we're going to feed the extra 2 billion future folk.

When we're not great at feeding the current population...

  • About 1 billion people are hungry
  • About 1 billion people are overweight

... it's hard to imagine throwing another 2 billion human beings in the mix is going to make the whole situation much better.

Thankfully, a bunch of smart peeps are looking into a solution to the world's food problem, including this guy Jon Foley and his team. They argue that there isn't one silver bullet solution. Instead, they're looking for the "silver buckshot" solutionS. Neat idea, right?

Check out this TEDxTC video of Jon sharing his thoughts on the matter:

If you have six minutes of your day to spare, watching this video clip is a great way to spend it:

Yup, it's Friday. Time for a new Science Friday video. Today: Science Friday
Science FridayCourtesy Science Friday
"The New York Department of Environmental Protection installed a prototype "algal turf scrubber" at once of its wastewater treatment plants in Queens. The scrubber--two 350-foot metal ramps coated with algae that grows naturally--is designed to use algae to remove nutrients and boost dissolved oxygen in the water that passes through it. John McLaughlin, Director of Ecological Services for the New York City Department of Environmental Protection (DEP), and Peter May, restoration ecologist for Biohabitats, explain how the scrubber works, and where the harvested algae goes."

Here on good ol' Planet Earth, the human population is growing and boy are folks hungry. By 2050, there should be 9 billion of us running around, but Earth isn't getting any bigger and we probably don't want to try farming on the moon. On the Buzz, we've read about some plants that have been modified to resist drought and tough climates, but what about the wisdom of the ancient Andeans?

The Andes: Just in case you didn't know what they look like. Kinda gorgeous, eh?
The Andes: Just in case you didn't know what they look like. Kinda gorgeous, eh?Courtesy David Almeida

No, no, not that wisdom, delicious as it is. I'm talking about Andean farmers. These guys are reviving tough heirloom potatoes, clever terraces, and Incan irrigation systems. The species and systems had been used for thousands of years, and were probably adapted to the uncertainties of agriculture in the high mountains.

But when Spaniards showed up a few centuries ago with their own methods, traditional ways slowly fell out of use even though they were better suited to the region's need. Now that farmers are rediscovering the benefits of these ancient traditions, they're hoping these methods can help hungry folks in other parts of the world, too. Now that's a wisdom I can sink my teeth into!