Stories tagged fossil fuels

Oct
28
2011

What do a banana and a chunk of coal have in common? Carbon!

Dr. Peter Griffith, Director of NASA's Carbon Cycle and Ecosystems office, spoke to twenty of us training to be Earth Ambassadors for NASA about why it's important to teach people about the way carbon moves around on our planet, in order to help them understand climate change.

He showed us this fantastic video that describes the Carbon Cycle on earth and describes how "young, fast carbon" like that in a banana differs from "old, slow" carbon, like that in coal and other fossil fuels.

See video

Dr. Griffith also described how you can tell the difference between objects containing old carbon and young carbon by looking at the radioactive decay of carbon 14. Carbon in its normal state is called carbon 12, or C12. However, cosmic rays, like those from the sun, convert some atmospheric carbon into a slightly radioactive form called carbon 14, or C14. Over time, this carbon decays back into Carbon 12.

All living plants and animals contain some C14, since they constantly take in atmospheric carbon dioxide.

Fossil fuels like coal and oil, which have been underground for millions of years, contain only C12 (fully decayed Carbon,) while a banana still contains some C14 from atmospheric carbon dioxide the banana tree absorbed.

It is not surprising that the carbon downwind of power plants burning coal is mostly C12. Trees can also lock up carbon in their trunks and branches in for many years.

The carbon released by burning fossil fuels and setting tropical forests ablaze is carbon that would naturally have remained "locked" up. Human activities like these are creating an excess of long-lived carbon dioxide gas in the atmosphere and are causing our world's climate to warm.

NASA and other scientists are working hard to study the science of climate change. How our planet and its inhabitants will respond to the challenges resulting from this change remains to be seen.

Oct
18
2011

With the exception of the Family Christmas Flu of 2002, I haven’t stopped to appreciate the toilet much in my life. However, Dr. Richard Alley’s presentation at the Science Museum of Minnesota on October 6th really made me think about toilets – and the waste we flush – like I never had before.
Authentic chamber pot: Nothing pretty about it
Authentic chamber pot: Nothing pretty about itCourtesy Evelyn Simak

Today, we can’t imagine living without toilets or indoor plumbing, especially in populated areas for extended periods of time. Gone are the days of the chamber pot, the daily hurling of human waste from your window into the street below, and the pervasive stench that resulted.

It’s really incredible to think about how society went from chamber pots to toilets. I mean, there is a HUGE amount of technology development, public policy, and civil engineering involved in the invention, installation, and maintenance of plumbing infrastructure. (You never thought about it either, did you?) You have to invent the plumbing fixtures, convince the government and the public that it’s a necessity, perfect the manufacturing process, install miles of underground pipes, build collection and treatment plants, and continually upkeep the entire system.

The daunting obstacles must have made indoor plumbing seem virtually impossible back in the day, but we did it anyway, which raises two really great questions: How and why?

How we made the switch from chamber pots to toilets is less important than why we made the switch because we probably wouldn’t have bothered to figured out how if we didn’t have a dang good reason why to put in all the effort. Like grandma says, “Where there’s a will, there’s a way.”
Authentic toilet: Something pretty about it.
Authentic toilet: Something pretty about it.Courtesy 13th Street Studio

We put in the effort to move towards toilets because we realized we couldn’t keep living with chamber pots. Chamber pots were unsightly, smelly, and really bad for public health. After we became convinced of the necessity of toilets, we figured out how to do it and we even put up with the disruption their adoption created. A few generations later and we can’t imagine living any other way.

Dr. Alley says we’re now on the cusp of our own epic Chamber-Pot-to-Toilet story.

Today, we can’t imagine living without fossil fuels as an energy source, but our grandchildren might not be able to imagine what it’s like living without renewable energy. Chamber pots and excrement are like fossil fuels and pollution: unsightly, smelly, and bad for public health. Hopefully, like with toilets, we’ll eventually realize we can’t keep living in our own filth and we’ll find a way to widely adopt renewable energy to replace fossil fuels.

According to Dr. Alley’s presentation, we already have the technology to capture enough renewable energy to cover the world’s current energy usage (15.7 terawatts) with some to spare, and the amount of renewable energy available for capture in the future is simply staggering. That means we should also be able to serve populations that do not currently have energy access and provide energy for our future's growing global population – all sustainably! Sure the technology development, public policy, and civil engineering involved in switching to a new energy system is daunting, but it can't be much longer until we realize it's a necessity worth the effort.

You can watch segments of Earth: The Operator’s Manual online (including Dr. Alley's 30 second introduction of himself, check out 1:23-1:53) and even read the annotated script. Segment 9 of Chapter 3 (beginning at page 98 of the annotated script), Towards a Sustainable Future, covers the details of which renewable energy sources we could use to create a global sustainable energy portfolio.

One (short!) year ago today, BP’s Deepwater Horizon oil drilling rig exploded 42 miles off the coast of Louisiana. Eleven families lost loved ones on that day, but the social, economic, and environmental damage had only begun.

Oil slick
Oil slickCourtesy U.S. Coast Gaurd

By April 22, 2010 the $560 million rig sunk, leaving oil spewing from the seabed into the Gulf of Mexico. On the 29th, the state of Louisiana declared a state of emergency due to the threat posed to natural resources, and U.S. President Barack Obama stated that BP was responsible for the cleanup.

Hopeful in those first days, remote underwater vehicles were sent to activate the blowout preventer, but the effort failed. In the following weeks that turned into months, controlled burns, booms, skimmers, and dispersants were used to cleanup oil as efforts to stop the oil flow were underway. The Justice Department launched a criminal and civil investigation, a moratorium on oil drilling was enacted and later rescinded, and the no-fishing zone grew to 37% of American Gulf waters. After 5 months, 8 days, and roughly 5 million barrels of spilled oil, a pressure test finally determined that a relief well had successfully stopped the oil flow. The spill was the world’s largest accidental release of oil into a marine environment.

The BBC wrote an article to commemorate the event and bring readers up to speed on the status of the Gulf today. National Geographic also has some neat zoomable maps.

Oct
07
2010

What if I told you University of Minnesota geology and geophysics professor, Martin Saar, says geothermal energy can be made even greener through carbon sequestration?!

You’d probably say, “Huh?? Hold on, what is geothermal energy anyway, and how does it work?”

Geothermal is heat from deep inside the earth. Because heat is a form of energy, it can be captured and used to heat buildings or make electricity. There are three basic ways geothermal power plants work:

  1. Dry steam plants: Uses high-pressured hot steam to turn generator turbines. Think “steam to turbines.”
  2. Flash steam plants: Uses high-pressure hot water to create steam to turn generator turbines. Think “water to steam to turbines.”
  3. Binary cycle power plants: Uses high-pressure hot water to heat another liquid, which then turns to steam and turns the generator turbines. Think “water to other liquid to steam to turbines.”

(Click here for great diagrams of each of these geothermal energy production methods.)

“And what about carbon sequestration too? What’s that and how does it work?”
Carbon Sequestration: This nifty diagram illustrates both terrestrial and geologic carbon sequestration pathways.  Bonus!
Carbon Sequestration: This nifty diagram illustrates both terrestrial and geologic carbon sequestration pathways. Bonus!Courtesy Department of Energy

Carbon sequestration includes carbon (usually in the form of carbon dioxide, CO2) capture, separation, transportation, and storage or reuse. Plants, which “breathe” CO2, naturally sequester carbon, but people have found ways to do it artificially too. When fossil fuels are burned to power your car or heat your home, they emit CO2, a greenhouse gas partially responsible for global climate change. It is possible to capture those emissions, separate the bad CO2, and transport it somewhere for storage or beneficial reuse. CO2 can be stored in under the Earth’s surface or, according to Martin Saar’s research, used in geothermal energy production.

Alright. We’re back to Professor Saar’s research. Ready to know just how he plans to sequester carbon in geothermal energy production?

It’s a simple idea, really, now that you know about geothermal energy and carbon sequestration. Prof. Saar says geothermal energy can be made even greener by replacing water with CO2 as the medium carrying heat from deep within the earth to the surface for electricity generation. In this way, waste CO2 can be sequestered and put to beneficial use! As a bonus, CO2 is even more efficient than water at transferring heat.

But don’t take my word for it. Come hear Professor Martin Saar’s lecture, CO2 – Use It Or Lose It!, yourself during the Institute on the Environment’s Frontiers on the Environment lecture series, Wednesday, October 27, 2010 from noon-1pm.

Frontiers in the Environment is free and open to the public with no registration required! The lectures are held in the Institute on the Environment’s Seminar Room (Rm. 380) of the Vocational-Technical Education Building on the St. Paul campus (map).

Jul
27
2010

The Smartypants Grid

The smart grid is actually a futuristic collection of technologies that manage electricity distribution. Ultimately, they are "smarter" (more efficient) at generating, distributing, and using electricity than the current industry standards.

The Einstien Meter: Smart meters are a component of the smart grid infrastructure.  They provide the two-way communication between electricity consumers and providers with the goal of enabling consumers to manage their electricity usage and spending.  The utility providers also benefit by experiencing fewer demand spikes.
The Einstien Meter: Smart meters are a component of the smart grid infrastructure. They provide the two-way communication between electricity consumers and providers with the goal of enabling consumers to manage their electricity usage and spending. The utility providers also benefit by experiencing fewer demand spikes.Courtesy Duke Energy

Some people are getting excited about smart grids because cutting back on electricity usage is cutting back on fossil fuel consumption which is cutting back on human-driven causes of global climate change. (Are you still with me or did I lose you there?) Other people are looking forward to smart grids because they should decrease the number of brown- and blackouts experienced in the country, which improves the region's health and economy. Still more people are pumped for the smart grid because it could mean lower electricity bills for their homes.

When will the smart grid reach your hometown? That depends. Some cities already have smart grid technology, but regional adoption is set to take place on a rolling basis during the next five years and is largely dependent on whether the American people get on board.

Scientific American: How Will the Smart Grid Handle Heat Waves?

"Pretty well, once the technology to automatically respond to peak demand and store renewable energy matures."

Smart grid test cites in Harrisburg, PA, Richland, WA, and Boulder, CO have their work cut out for them this week as people across the nation crank down the A/C to battle the heat wave covering most of the continental United States. According to the Scientific American article, a regional smart grid should have the potential to excel under stressful heat wave conditions. In the meantime, utility companies and academics are working toward developing a method to better store electricity when supply exceeds demand thus creating a stockpile of electricity for times of scarcity.

Explore More:

Check out SmartGrid.gov for all things smart and grid-y. Or, if you're looking for something more technical, the Department of Energy's other smart grid website.

If you're looking for a more interactive learning experience, check out General Electric's smart grid webpage complete with narrated animations.

Of course, if you're looking to hear from academics or industry experts themselves, the Initiative for Renewable Energy and the Environment in conjunction with the University of Minnesota's Institute on the Environment and St. Anthony Falls Laboratory, are hosting Midwest's Premier Energy, Economic, and Environmental Conference, E3 2010, at the St. Paul River Center (right across Kellogg Blvd from the Science Museum) Tuesday, November 30.

This article describes a new sugar-based compound in development by researchers at the City College of New York that has the potential to make oil slick cleanup a lot easier in the future. The compound turns the oil to gel, which can be easily skimmed from the water's surface. This is a great alternative to dispersants like the ones BP used because it's nontoxic and shouldn't harm ocean organisms. Check out the video on the same page of that stuff in action--pretty cool!

Feb
23
2010

There's lots of buzz (normal buzz, not our patented Science Buzz) on the 'net today about the "Bloom Box" featured on 60 Minutes this weekend.

It seemed to me to be a pretty junky interview and feature, but I'm intrigued nonetheless; the Bloom Box is supposed to be an efficient new fuel cell that would allow electricity to be produced at the site where it will be used, eliminating transmission losses, and efficiently converting fuel to energy.

It runs on hydrocarbons, but it sounds like it's pretty omnivorous as to the kinds it can use (so natural gas works, but so would carbon-neutral biogas, etc), and it presumably emits CO2, only much less of it than traditional power generation. (The interview was extremely fuzzy on that aspect, but the Atlantic's article about Bloom from a month ago says that the device does release CO2.)

Something like 20 companies in California are already testing Bloom Box units, and the people making them to have attracted a ton of money, so the technology doesn't look quite so pie in the sky as a lot of other energy inventions we're supposed to get excited about.

The guy behind the Bloom Box believes that, inside of a decade, you'll be able to have one in your basement for something like $3000 dollars. More expensive than a used Super Nintendo, but, as far as major appliances go, pretty darn cheap. We'll see about that, sir... The featured skeptic seems to think that, if we see it at all, we'll see it coming from a company like GE, not Bloom Energy.

Here's the 60 Minutes piece:

Watch CBS News Videos Online

The whole operation has been kept pretty secret until recently, and supposedly there will be more details coming soon.

But until then... What do you think? Ho-hum? Hoax? Or is this something to be excited about?

A Swiss teacher just completed a 17-month trip around the world in a solar-powered car. Louis Palmer made the 32,000 mile trip towing a trailer load of batteries charged by the sun. His journey took him through 38 countries and ended in Poznan, Poland where the United Nation talks on climate change are taking place. the vehicle has a top speed of 55 mph and can travel 180 miles on a single charge. The Solar Taxi's official website has information, updates, photos, and a blog.

A new study found a link between human use of fossil fuels and an increase in the severity of hurricanes. The burning of fossil fuels has increased the level of greenhouse gases in the atmosphere, which has led to the warming of oceans in regions where hurricanes develop. The warmer the ocean water, the more severe the hurricane.