Stories tagged GMO

Oct
07
2010

In the movie Jurassic Park, a tale of genetic engineering gone bad, scientists arrive on an island to find that an all-female population of resurrected dinosaurs may have found a way to breed. The following conversation ensues:

Henry Wu: You’re implying that a group composed entirely of female animals will… breed?

Dr. Ian Malcom: No, I’m simply saying that life, uh… finds a way.Atlantic salmon
Atlantic salmonCourtesy Dan Taylor

As we find out later in the movie, the dinosaurs have indeed been breeding.

Salmon farmers tell us that a proposed population of genetically modified "super salmon" will be composed entirely of sterile females, making it impossible for them to mate, should they escape to the wild. Some consumers are fighting FDA approval of the fish as food and say consumers should be alerted to the fact that they are purchasing the genetically engineered fish (by way of labeling.)

Advocates of the super salmon claim the meat from the new super salmon is indistinguishable from that of their natural cousins. However, critics fear that the new “frankinfish” may pose danger to both consumers and to the environment.

Super salmon are Atlantic salmon that have had a gene (DNA) for a growth hormone normally made by Chinook salmon inserted into their genetic map. In addition, scientists have put some DNA from another ocean fish, called a pout, in front of the growth hormone gene to keep the fish’s body pumping out growth hormone all of the time.

They don’t get bigger than natural salmon, but they grow much faster. This creates a potential threat to wild salmon, should the modified salmon escape from fish farms. (They would potentially out-compete and out-breed their natural counterparts in the wild.)

Despite claims that super salmon will all be sterile females, one article I read mentioned that "a small percentage might be able to breed. They would be bred in confined pools where the potential for escape would be low.” Another stated that the FDA says that up to 5% of the eggs may be fertile.

Genetic engineering has resulted in many products that make people’s lives better, but we have to be aware of the danger it poses. Microbes, plants and animals can swap DNA and genetically modified organisms are already finding ways to invade the natural world.

Life finds a way, whether we want it to or not. It is not something to be taken lightly.

Like the Spiderman of silkworms: I guess.
Like the Spiderman of silkworms: I guess.Courtesy Tom or Jerry
Is this maybe a cool thing? Spider silk from genetically engineered silk worms. Or, at least, hybrid spider/silk worm silk.

Why do we want silk worms that produce spider silk, when they're already so good at pooping out their own worm silk, you ask? Because spider silk is awesome. It's super strong (as strong or stronger than most of our best artificial materials), and spiders manage to manufacture it at low temperatures, low pressures, and with water as a solvent (and it would be great if we could make strong materials that way). However, unlike wormy little silk worms (caterpillars, anyway), spiders don't play nice—you can have lots of silk worms together, and they'll all be happy to spin little silk cocoons, but if you put a lot of spiders together, they'll be most happy killing each other. Also, they are creepy.

Genetic engineers had managed to insert genes for the production of spider silk protein into goats, who expressed them by producing the material in their milk, but I don't believe it had all the qualities of true spider silk, and I don't imagine that's an ideal way to produce it.

But now scientists at the University of Notre Dame, the University of Wyoming, and Kraig Biocraft Laboratories, Inc. have succeeded in transplanting spider silk genes into silk worms. The silk they produce isn't quite as strong as spider silk, but researchers believe that they may eventually be able to get genetically modified worms to produce silk even stronger than native spider silk.

Interesting, interesting.

Sep
29
2010

Not real: Not even close. So don't go thinking that what's happening in this picture is real.
Not real: Not even close. So don't go thinking that what's happening in this picture is real.Courtesy Paranoid
Check this out, my little ducks: Scientists have genetically modified corn, so that it produces a deadly toxin. And that toxin is now appearing in waterways across the country.

O.M.G.

But you should also check this out, my little chickpeas: That toxin (called “BT toxin”) is also naturally produced by the soil-dwelling bacteria Bacillus thuringiensis, which is already found sort of all over the place, including on leaves of plants. Also, all evidence indicates that while the toxin is deadly to certain insect species, it is utterly harmless to vertebrates (including people). Which is good, because most of the corn planted in this country has been engineered to produce the toxin in its leaves and stems,a nd that’s the way it’s been for years. And that may be good itself, because the bug killing toxin the plants produce can allow farmers to use a lot less synthetic, broad-spectrum pesticides (broad spectrum pesticides kill off lots of different bugs, instead of a specific few).

And consider this, my little Turkish delights: Those manufactured pesticides definitely run off fields into ground and surface water. See? So it seems like pointing out that the chemicals produced by the plants themselves also find their way into the water is a little bit of a “well, duh,” situation.

But science doesn’t run on “duhs,” my little Faberge eggs, it runs on empirically confirming or disproving explanations and ideas, whether or not they initially seem obvious. Because the toxin was contained in the leaves and stalks of the plants, it seemed less likely to get washed away in the same way sprayed-on pesticides usually are. But it got washed away nonetheless.

It got washed away, my little candy apples, but not in the same way—the toxin was present in streams 6 months after harvest, inside the floating detritus from cornfields. That is, the toxin was inside the bits of leaves and stems that had washed off cornfields, and into streams.

That doesn’t mean that the BT toxin is harmless, my little floral prints, but nor does it mean that it’s necessarily harmful. BT toxin appears to be a pretty environmentally safe pesticide on land, but that doesn’t say much about effects it could have in an aquatic ecosystem. It could be that the presence of BT toxin in the water is still much safer than the alternative (chemical pesticides), or it could be that it will have far reaching effects—Corn Belt streams end up in the Mississippi and Missouri River basins, and eventually in the Gulf of Mexico, after all.

So, my little rabbits’ feet, we should try not to be all, “well, duh,” or to get too freaked out about the whole situation. Before that happens, scientists will have to figure out what environmental effects the BT toxin has, and how those compare to other pesticide run-off, and how each might balance against our need for crops that haven’t been eaten by bugs.

Scientific American’s brief article on the presence of BT toxin in streams also brings up the issue of no-till farming. Scraps from corn fields ending up in streams is very common, apparently, but the SA article suggests that no-till farming might be increasing the amount of that kind of organic matter that end up in the water. No-till farming is a method of farming where the soil isn’t regularly plowed or turned over, and scraps from crops (crop residue) are left on the field after harvesting to increase soil quality. No-till can increase the amount of water in the soil and decrease erosion, but the remaining crop residue might end up in nearby streams to a greater extent.

If this is the case, my little supernovas, it makes me wonder if the crop residue from no-till fields is worse for the water than soil washed off of tilled fields (and whatever washed away with that soil).

I also wonder what becomes of the toxins in BT-producing crops when the crop residue is not left on the field. Because, of course, that stuff doesn’t just disappear. Crop residue can be burned on the field, or processed into ethanol fuel, burned in a power plant to generate electricity, or maybe dumped into the ocean. So, my little chitterlings, even without bringing our thirst for fuel and electricity into the mix, what happens to BT toxin in those scenarios? Probably nothing, for the most part, but, again, we don’t want to invest too much time in saying “duh.”

It’s all very complicated. But you knew that already, didn’t you, my little safety goggles?

Sep
16
2010

An Atlantic salmon: slightly GMOed (by me).
An Atlantic salmon: slightly GMOed (by me).Courtesy Hans-Petter Fjeld
Buckle up, Buzzketeers, because school is in session.

Did I just mix metaphors? No! You wear seatbelts in my school, because they help prevent you from exploding.

But you will probably explode anyway, because you are going to get taught. By JGordon. About the future.

Here’s your background reading: a GMO is a genetically modified organism—a living thing whose genetic material has been altered through genetic engineering. Humans have been genetically modifying plants and animals for thousands of years (by selectively breeding them for desired characteristics), but it’s only been in the last few decades that we’ve gotten really fancy and fast about it.

While in the past, or what I like to call “the boring old days,” it took generations to breed crops that produced high yields, grew faster, or needed less water, we can now do that sort of thing in an afternoon. (Well, not really an afternoon, but these aren’t the boring old days, so we should feel free to use hyperbolic language.) We can insert genes from one plant into another, bestowing resistance to pests or poisons, or increasing the nutrition of a food crop.

Pretty cool, right? Maybe. GMOs tend to make people uncomfortable. Emotionally. They get freaked out at the thought of eating something that they imagine was created like the Teenage Mutant Ninja Turtles. Most people prefer to eat stuff that was created the old fashion way: through SEX.

Once they’re in your tummy, GMOs are probably pretty much the same as any other food, really. However, there may be other reasons to approach them cautiously. Most organisms make a place for themselves in their environment, and their environment makes a place around them, and things tend to work pretty well together. But GMOs are brand new organisms, and it can be very difficult to tell how they’ll fit into the rest of the natural world. Will they out-compete “natural” organisms, and cause them to go extinct? Will they interbreed with them, and introduce new weaknesses to previously strong species? The repercussions of such events could be… well, very bad.

On the other hand, GMOs could provide food—better, more nutritious, easier to grow food—for people and places that really need it. And with global population expected to increase by a few billion people before it stabilizes, we’re going to need a lot of food.

Just like everything else, this stuff is complicated. Really complicated. But the issue isn’t waiting for us to get comfortable with it before it pushes ahead. Hence, our main event: GMO salmon.

You might not have devoted much mental space as of yet to mutant ninja salmon, but you will. See, transgenic salmon (i.e., salmon with genes from other animals) may be the first GMO animal on your dinner plate. Or whatever plate you use for whenever you eat salmon. If you even use a plate, you animal.

What’s the point of the GMO salmon? In the right conditions, they grow much faster than their normal counterparts, and they require about 10% less food to reach the same weight as normal salmon. The company responsible for them, AquaBounty, has been working on the project for more than 20 years. Inserted into a commonly farmed species, the Atlantic salmon, the final, successful combination of genes comes from Chinook salmon (a closely related, but much larger species) and the ocean pout (a slightly eel-like fish that can tolerate very cold water). While Atlantic salmon typically only grow during the summer, the new variation produces growth hormones year round, so they can grow to marketable size in about 60% of the time it would normally take, assuming they’re kept in water that’s at the right temperature, and given plenty of food year round.

While some people object to GMO foods on the grounds that the long-term effects from eating them are unknown, probably the more salient argument is the effect they might have on the natural world. A larger, faster growing species could put tremendous pressure on already stressed, wild Atlantic salmon. AquaBounty counters that in normal ocean temperatures, the GMO salmon would grow no faster than wild salmon. Also, all of the GMO salmon are female, and 95 to 99% of them are sterile (they can’t reproduce). And none of that should matter, because the salmon will be raised in tanks, away from the ocean.

Even if they are successfully isolated from wild salmon, opponents point out, that doesn’t mean they are isolated from the environment. See, salmon eat other fish, and it takes about 2 pounds of other fish to make one pound of salmon (according to this article on the GMO salmon). Large amounts of the kinds of fish people don’t eat are caught and processed to feed farm-raised salmon. If cheaper, fast-growing salmon cause the demand for salmon to rise, more food stock fish will have to be caught to supply the farms, putting pressure on these other species.

A salmon farm: Nets keep the salmon in and the predators out, but disease, parasites, and pollution move through freely. But salmon farms reduce stress on wild salmon populations. It's complicated...
A salmon farm: Nets keep the salmon in and the predators out, but disease, parasites, and pollution move through freely. But salmon farms reduce stress on wild salmon populations. It's complicated...Courtesy Dark jedi requiem
Then again, if the GMO salmon can be raised successfully and profitably in inland tanks, it could remove other negative environmental impacts. Aquaculture fish farms are typically in larger bodies of water, with the fish contained inside a ring of nets. The high concentration of fish in one area leads to more diseases and parasites, which can spread to nearby wild fish. Salmon farms also produce lots of waste, and it’s all concentrated in one spot. Supposedly, a farm of 200,000 salmon produces more fecal waste than a city of 60,000 people. (That’s what they say—it sounds like a load of crap to me, though.)

It’s a tricky subject, and anyone who says otherwise is being tricky (ironically). Nonetheless, it seems likely that the Food and Drug Administration will soon declare this particular GMO as officially safe to eat, and GMO salmon fillets could make their way to the supermarket in the next couple years. Even if the FDA didn’t approve the fish, however, that would only mean that it couldn’t be sold in the US—the operation could continue to produce fish for international markets.

GMO salmon are just the tip of the GMO animal iceberg (if you’ll forgive the iceberg analogy—I don’t mean to imply that they are going to sink us.) The next GMO in line for FDA approval, probably, is the so-called “enviropig,” a GMO pig with a greater capability to digest phosphorus. This should reduce feed costs, and significantly lower the phosphorus content of the manure produced by the pigs. That’s important because phosphorus from manure often leaches into bodies of water, fertilizing microorganisms, which, in turn, reproduce in massive numbers and suffocate other aquatic life.

As the human population grows and needs more food, genetically engineered plants and animals are going to become increasingly common. They might make the process of feeding and clothing ourselves easier and more sustainable. Or they might royally screw things up. Or both. So start thinking about these things, and start thinking about them carefully.

Er… so what do you think about GMOs? Are they a good idea? Are they a good idea for certain applications? Are they a bad idea? Why? Scroll down to the comments section, and let’s have it!

Aug
27
2009

Getting the Facts

Today we are all experiencing a global food crisis. Food prices are inflating, families are food poor. Some of the deaths due to hunger or hunger related causes can be avoided. Many children are malnourished but The most damaging micronutrient deficiencies in the world are the consequence of low dietary intake of vitamin A. In the world, the largest dietary eaten is rice, over 80 percent of the world's population depends on rice as their staple food. Although rice tastes awesome with chicken and with everything else, many people around the world do not get enough β-carotene (provitamin A, the form before vitamin A is converted) to help produce Vitamin A in what they are eating or able to afford to eat. Vitamin A is necessary, without Vitamin A our eyes would be unable to function properly. According to the World Health Organization, 250,000 to 500,000 children to go blind every year due to the lack of Vitamin A deficiency (VAD). Every year it has has claims the lives of 350 000 or more, people who are VAD become blind and 60% of those who become blind will die. 400 million rice-consumers may lead to fatal health problems, some are impaired vision; impaired epithelial integrity, exposing the affected individuals to infections; reduced immune response; impaired haemopoiesis (and hence reduced capacity to transport oxygen in the blood) and skeletal growth; and measles infection. MAP
MAPCourtesy Wikipedia

The science behind

Golden rice is a genetically modified (GM), it is made through genetic manipulation. The gene responsible for the yellow color like the daffodils is inserted into the rice genome, and causes rice to produce large quantities of β-carotene.

The purpose of golden rice was made to to produce B-carotene, In the location where people eat the most, the endosperm. β-Carotene is composed of two retinyl groups ( the animal form of Vitamin A, which is different from the plants who are able to perform photosynthesis for their Vitamin A), and is broken down in the the mucous membrane of the small intestine by B-carotene to retinal, a form of vitamin A. Carotene can be stored in the liver and body fat and converted to retinal when it is needed, thus making it a form of vitamin A for mammals like us. SCIENCE
SCIENCECourtesy Wikipedia

for more details on the science behind golden rice you can check out this website:

http://goldenrice.org/Content2-How/how1_sci.html

But Why Is This Not Happening?

But behind this great discovery and invention people are bound to have their own reason's why they would like it or not. Many have responded with Golden Rice with rage and the desire for those to stop making the golden rice. Many of whom wish for those who do have VAD to receive naturally grown food instead of humans modifying. Those who feel this way feels that other's deserve to eat real food instead of man made. How do you feel towards genetically modified food? Is it still food or something else? With this conspiracy going on the Golden Rice is being stored in a building in Europe because of those who angered about the Golden Rice. Not only do people feel that way other's also said that it will effect the economy worldwide, if golden rice keeps going around the world for free people will stop buying rice and the rice industry would fall apart and the two largest rice exporters ( Thailand and Vietnam ) economy would fall apart and possibly even worse.

My view on this is that Genetically modified food is still food and is made for the better. If we waited for naturally grown food to grow I think it will take way to long for it to be ready for animals and humans to eat, in the world the food consumption is rising and more people demanding food. For example, in 1985 the average Chinese
consumer ate about 20 kg (44 lb) of meat a year, and now consumes over 50 kg (110 lb). Genetically modified food can help feed those who need it. And I understand that there are many people in Europe who do not support GM food, but don't you think we should send food those people who are dying from hunger and save them as soon as possible?

Researchers in Japan have developed a strain of rice that, when ground into a powder, acts as a vaccine for cholera. The rice has been modified to trick the body into producing an immune response, thus leaving you protected if you later encounter the bacteria.

The rice has only been tested in mice so far. If it work in human trials, it may be a major advance in the fight against cholera, as the rice powder can be stored more easily than the current vaccine.

Nov
14
2006

The Bell Museum of Natural History is hosting a CAFE SCIENTIFIQUE tonight (Tuesday, November 14) at 6pm at the Varsity Theater in Dinkytown. (There's a $5 suggested donation, but you can attend for free.)

This month, Cafe Scientifique explores the science and politics of genetically modified organisms, or GMOs. What is a GMO? How and why have researchers been modifying the genetic makeup of plants and animals, and what are the possible risks and benefits of this type of research? Speakers from the University of Minnesota will discuss the science as well as the policy concerns of genetically modified organisms.

Guest speakers are:

  • Professor Anne R. Kapuscinski, Ph.D., University of Minnesota Department of Fisheries and Conservation Biology, Sea Grant Extension Specialist in Biotechnology and Aquaculture
  • Jennifer Kuzma, Ph.D., Interim Director and Assistant Professor at the Center for Science, Technology, and Public Policy, Humphrey Institute, University of Minnesota.

Dr. Kuzma was featured on Minnesota Public Radio's Midmorning show this morning, discussing the politics of genetically modified foods and potential safety issues.

Do you have questions about genetically modified crops? Do you try to avoid genetically modified foods at the grocery store? What worries you or excites you about the potential of GMOs?