Stories tagged nanotechnology

Nanotechnology is the ability to create and manipulate atoms and molecules on the smallest of scales. Will this emerging science revolutionize the world we live in?

Oct
19
2010

WaterWater
WaterWaterCourtesy Leigha Horton
Ever been on a beach (and I’m talking a real beach that rests alongside an ocean, not some piddly lakeshore)…AHEM, as I was saying - ever been on a beach when someone nearby sighs aloud, “water, water everywhere, nor any drop to drink?”

I have, and have always found the thought astounding. How is it that our world can have so much water and somehow not figure out how to make it drinkable via efficient means, and at the same time saddle up a populace with something as advanced as the iPhone?

And just so you know, over 70% of the Earth is water, and of that 70%, over 96% of it is salt water from our oceans. Salt water that is totally unsuitable for drinking. (Who’s thirsty? MEEEEE!)

Now don’t get me wrong, desalination methods exist in the world – they’re just not very efficient yet, using boatloads of energy for very little final, useable product.

Until now.

According to a recent Wall Street Journal article, High-Tech Cures for Water Shortages, NanoH20, Inc. is harnessing the power of reverse osmosis using nanoparticles. Turns out these nanoparticles “attract water and reject salts and other particles that can clog other membranes, reducing the energy needed to push water through the membrane.” That’s pretty awesome. California, with its entire west coast on the Pacific Ocean, could stop fighting with Wyoming, Colorado, Utah, New Mexico, Arizona, and Nevada over rights to the Colorado River water.

And since NanoH20 is based in southern California, which presently gets most of its drinking water piped in from the dwindling Colorado River, I trust them in taking this whole useable-water-thing seriously.

Graphene Looks a Little Like Chicken Wire
Graphene Looks a Little Like Chicken WireCourtesy By English Wikipedia [CC-BY-SA-3.0-migrated-with-disclaimers or GFDL-en], from Wikimedia Commons
What would happen if you stretched a piece of graphene (a chicken-wire looking sheet of carbon one atom wide) across a teacup, then rested the weight of a truck on top of a pencil on top of the whole thing? NOTHING. Cool.

Check out what the New York Times had to say about it.

Growing nanowires horizontally yields "Nano-LEDs

Nano light emitters: Single row of nanowires (cylinders with red tops) with fin-shaped nanowalls extending outward (National Institute of Standards and Technology)
Nano light emitters: Single row of nanowires (cylinders with red tops) with fin-shaped nanowalls extending outward (National Institute of Standards and Technology)Courtesy NIST
These “nano-LEDs” may one day have their light-emission abilities put to work serving miniature devices such as nanogenerators or lab-on-a-chip systems. NIST.gov

In recent work published in ACS Nano,* Nikoobakht and Herzing increased the thickness of the gold catalyst nanoparticle from less than 8 nanometers to approximately 20 nanometers. The change resulted in nanowires that grew a secondary structure, a shark-like “dorsal fin” (referred to as a “nanowall”) where the zinc oxide portion is electron-rich and the gallium nitride portion is electron-poor. The interface between these two materials—known as a p-n heterojunction—allows electrons to flow across it when the nanowire-nanowall combination was charged with electricity. In turn, the movement of electrons produced light and led the researchers to dub it a “nano LED.”

Sep
19
2010

Materials science

Materials scientists figure out ways to make things stronger, cheaper, or better. A favorite technique is nano-self-assembly. Just mix together the right ingredients and "presto", you get a wonder material. Another great development would be for the material to be self-repairing.

Self healing solar cells

MIT scientist, Michael Strano, and his team have created a material made up of seven different compounds including carbon nanotubes, phospholipids, and proteins. Under the right conditions they spontaneously assemble themselves into a light-harvesting structure that produces an electric current. The assembly breaks apart when a surfactant (think soapy solution) is added but reassemble when it is removed. These new self-healing solar cells are already about double the efficiency of today’s best solar cells but could potentially be many times more efficient.

Learn more about self-healing solar cells

Sep
05
2010

Quest for the best optical display

Better resolution displays
Better resolution displaysCourtesy Yutaka Tsutano

I have been waiting for the new iPod Touch. I want a display screen so sharp, it looks like a photograph. The "retina display" creates an image out of pixels that are only 78 nanometers. How small is that? Well, more than 300 of these pixels are packed in each inch. Supposedly this is the limit for human perception, or as some fanboys might say, "It doesn't get any better than this!"

Plasmonic nanoresonators

University of Michigan researchers can do better, though, Their paper in Nature Communications titled, Plasmonic nanoresonators for high-resolution colour filtering and spectral imaging explains how pixels of only 10 microns can be produced.

Such pixel densities could make the technology useful in projection displays, as well as wearable, bendable or extremely compact displays, according to the researchers.

How does it work?

The resonators are kind of like a light filter. Two nano thin layers of metal selectively allow light to pass through small sets of slits. The slit spacing determines which wavelength of light makes it through the slits.

Red light emanates from slits set around 360 nanometers apart; green from those about 270 nanometers apart, and blue from those approximately 225 nanometers apart. The differently spaced gratings essentially catch different wavelengths of light and resonantly transmit through the stacks. LinuxForDevices.com

These displays are simpler, use fewer parts, are more efficient, and should be cheaper to make. I am not going to wait, though.

Sep
05
2010

Wendy Schmidt oil cleanup X challenge

Cleaning up oil spills costs big money. BP says the Gulf cleanup cost is $8 Billion. Hoping that next time we can do it better, faster, and cheaper, Wendy Schmidt has offered $1.4 Million in prizes to inspire a new generation of innovative solutions.

A $1 Million Prize will be awarded to the team that demonstrates the ability to recover oil on the sea surface at the highest oil recovery rate (ORR) and the highest Recovery Efficiency (RE).

If you are interested click here for the competition rules.

MIT robotic seaswarm vehicles

MIT may have a jump on the competition with their Seaswarm project. Last week they showed off what looked like a solar powered treadmill that lapped up spilled oil. Using GPS and wireless communication, a swarm of these devices autonomously coordinate their movements.

"We envisioned something that would move as a rolling carpet along the water and seamlessly absorb a surface spill," said MIT researcher Assaf Biderman. "This led to the design of a novel marine vehicle -- a simple and lightweight conveyor belt that rolls on the surface of the ocean, adjusting to the waves." Computerworld

They estimate that 5000 of their robotic sea-swarm vehicles could clean up a Gulf sized spill in a month.
.

Sep
05
2010

Cotton for filters
Cotton for filtersCourtesy Martin Labar

Safe drinking water saves lives

Clean, safe drinking is desperately needed throughout the world. Usually filters "filter out" bacteria by having openings too small to get through. Trouble is, though, that the tiny holes get plugged up, stopping the flow of water. Stanford researchers have now developed a filter about 80,000 times faster than filters that trap bacteria.

Cheap and easy

The filter was made by dipping plain cotton cloth (from Walmart) in a mixture of silver nanowires and carbon nanotubes (for a few minutes). By charging the filter with 20 volts of electricity, over 98 percent of Escherichia coli bacteria were killed as they passed through. Even in remote or primitive areas, the electricity could be supplied by a small solar panel, or a couple 12-volt car batteries, or be generated from a stationary bicycle or by a hand-cranked device.

Cui said the next steps in the research are to try the filter on different types of bacteria and to run tests using several successive filters.
"With one filter, we can kill 98 percent of the bacteria," Cui said. "For drinking water, you don't want any live bacteria in the water, so we will have to use multiple filter stages."

Learn more
High-speed filter uses electrified nanostructures to purify water at low cost Stanford University News

Deathstalker scorpion venom, combined with nanoscale particles of iron oxide, can slow the spread of BRAIN CANCER.

What is there not to love in that sentence? You've got scorpion venom, nano stuff, brain cancer...heck, I was hooked at the word Deathstalker.

Just so you know - the formal science way of saying the same thing is “Chlorotoxin Labeled Magnetic Nanovectors for Targeted Gene Delivery to Glioma”. You can find the article here.

Deathstalker Scorpion
Deathstalker ScorpionCourtesy Ester Inbar

Aug
06
2010

The air around us is not as clean as it could be. Scientists are looking for ways to remove toxins, like nitrogen oxide, from the air we breathe. One of the main sources of nitrogen oxide is automobile traffic. A solution to this problem might be found under our very wheels.
Pavers: Pavers, like these, coated with nanoscale particles of Ti02 can help clean the air.
Pavers: Pavers, like these, coated with nanoscale particles of Ti02 can help clean the air.Courtesy Pacificpavingstone

How does it work? Concrete pavers are coated with nanoscale particles of titanium dioxide (TiO2). Kicked off with the energy from sunlight, TiO2 converts nasties, like nitrogen oxides, into much less harmful nitrates via a chemical reaction. Nanoscale particles have lots of surface area where a chemical reaction can occur. Also good? It seems that this coating remains stable. Tests conducted almost two years later show no change.

My favorite part of this article...they did not stop there. They asked "What about the nitrates we are introducing into the system? Where's that going?" Rain sweeps the nitrates off the road, into ditches and on to waste water treatment facilities.

Jul
29
2010

Not this kind of Heavy Metal: This kind of Heavy Metal is not Poison. Poison is an American Glam Metal band led by Bret Michaels.
Not this kind of Heavy Metal: This kind of Heavy Metal is not Poison. Poison is an American Glam Metal band led by Bret Michaels.Courtesy timparkinson

I haven't been feeling well lately, so I checked out heavy metal poisoning. Like you wouldn't do the same.

THIS kind of Heavy Metal: This is the kind of Heavy Metal I'm talking about. The kind that people wear hazmat suits to approach. This stuff is TOXIC. (Which is also a good band name...probably would be a heavy metal band...Wait, stop trying to confuse me!)
THIS kind of Heavy Metal: This is the kind of Heavy Metal I'm talking about. The kind that people wear hazmat suits to approach. This stuff is TOXIC. (Which is also a good band name...probably would be a heavy metal band...Wait, stop trying to confuse me!)Courtesy US Army Corps of Engineers

Turns out I've got the symptoms; headache and a bunch of other vague stuff.

But never fear...Science (and Nanotechnology) is here!

Researchers in Switzerland have figured out a way to use tiny nano-size magnets to attract and remove undesirable substances from blood, like heavy metals and overdosed steroids. Best part is that the process takes only minutes.

Nanomagnets remove toxins from blood: This photo should help.
Nanomagnets remove toxins from blood: This photo should help.Courtesy Functional Materials Laboratory, ETH Zurich

Blood goes in. Add the nanomagnets. Nanomagnets attract the "bad stuff" using linker molecules (works like it sounds - molecules that link things - in this case, they link nanomagnets to specific toxins or pathogens). Use a bigger magnet to collect all the nanomagnets with yucky stuff attached.

And VOILA! Clean blood.

What do you know, just reading about nanomagnets made my headache clear up. Go Science!

Learn more here...http://www.nanowerk.com/spotlight/spotid=17353.php