Stories tagged tobacco


Yes, of course I'm in a tobacco field: You guys figured out what?! But how? Of course... with a virus! I'll meet you at the tobaccoratory!
Yes, of course I'm in a tobacco field: You guys figured out what?! But how? Of course... with a virus! I'll meet you at the tobaccoratory!Courtesy Lauras512
Yeah, I’ll tell you what it can’t do: it can’t get that stink out of my freakin’ mittens.

But, besides that, tobacco is an interesting plant, and useful for a lot more than giving us cancer and temporary good feelings. Currently, some scientists are thinking that tobacco might be able to give us electricity-producing solar panels too.

It all started one sunny afternoon, when two scientists were lying in an open patch in a tobacco field, holding hands and watching the occasional cloud drift by.

“Isn’t tobacco great?” asked the first scientist.

“Yes,” sighed the second. She had just woven a bracelet from tobacco leaves, and was feeling like there couldn’t be a better plant in the world.

“But, really,” the first continued. “It’s really great.”

“Yes…” said the second, wondering where her colleague was going with the thought.

“Like, it sits here all day, just being tobacco…” started the first scientist.

“Which is great,” interrupted the second scientist.

“Which is great,” agreed the first scientist. Then she went on. “And it’s so good at sitting here, absorbing the sun… I wonder… I wonder…”

“Wonder what?” asked the second scientist, propping herself up on one elbow to look at the other scientist.

“Well, I wonder if we couldn’t use tobacco’s sunlight-gathering abilities to make, you know, solar cells. For electricity.”

The first scientist let herself sink back on to the ground, brushing dirt from the arm of her white lab coat. “You’re drunk,” she said.

“No! Well… maybe a little,” admitted the first scientist. “But I think it could work. Tobacco has evolved to have its chromophores—its sunlight-gathering molecules…”

“I know what a chromophore is,” said the second scientist.

“To have its chromophores very efficiently spaced out in its cells,” the first scientist went on. “If we could just figure out a way to make tobacco produce more chromophores, we could extract them from the plant, and coat solar cells with them. It could be a cheap, environmentally friendly way to make solar panels!”

“But how are we going to entice tobacco to produce more chromophores? By asking politely?” pointed out the second scientist.

“Yeah…” The first scientist frowned. “Yeah, I suppose you’re right. Never mind.”

In the warm air of the sunny tobacco patch, the suggestion was soon forgotten, and the first scientist drifted off to sleep. The second scientist played with the new tobacco bracelet on her wrist, and wrinkled her nose as a gentle gust of wind blew dust through the surrounding plants. She sneezed.

“Wait a second!” The second scientist shook the first scientist awake, looking excited. “What if we infected the tobacco with a virus?”

“What?” asked the first scientist sleepily, having all but forgotten about the idea.

“We could engineer a tobacco virus that would cause the plants to make more chromophores!” She gestured at the field around them. “We could just spray it on the field, like… like… like a giant sneeze!”

The first scientist jerked upright and gripped the second scientist’s shoulders tightly, her expression so intense it was frightening. The green of the tobacco all around them reflected in her eyes, giving her a Bruce Banner-ish, pre-hulk out look. The second scientist shivered.

“You,” whispered the first scientist, “are… a… genius!”

And that’s pretty much how it all went down.

This sort of thing takes time, though, so we shouldn’t expect the big tobacco/solar power juggernaut to get off the couch any time soon. Tobacco’s natural chromophore arrangement makes chains of molecules that could be ideal for absorbing light on solar panels, but they haven’t been made to produce electric current just yet. Once that gets figured out, however, it could lead to cheaper solar cells, with some biodegradable components. (On the other hand, they would likely have a shorter lifespan than other types of solar panels, but, hey, who doesn’t like throwing stuff away now and again?)


Brassinosteroids in tobacco plants: The level of brassinosteroids regulates both the size and aging of tobacco. With low levels, tobacco is dwarfed (some as small as 10 inches tall; see plant in front) and the leaves do not age, while at normal levels of brassinosteroids, tobacco stands almost 6 feet tall and the leaves turn yellow as they age (plant in back). Photo courtesy Michael Neff and Joanne Chory.

I am all over this idea. While I don’t personally mind mowing, I know lots of people do, and truthfully, while I don’t mind, I sure would like the additional free time!

In a paper in the May 4 issue of Nature, scientists from the Howard Hughes Medical Institute report that they have figured out a class of hormones that regulates growth in plants – including grass! And while this would be great for me, there are a lot of other good things that could come of this besides a mow-free yard, such as the development of trees that could be halted at a specific height so that they don’t interfere with power lines, raspberry bushes grown taller so that they are easier to pick, and increase the yields of crops such as corn or soybeans.

The key hormones are called brassinosteroids. With this new knowledge regarding brassinosteroids scientists may be able to stop growth in yard grass by limiting brassinosteroids or increase the yield of a crop by increasing brassinosteroids. Increasing crop yields would be very useful, especially considering urban expansion and the loss of farmland worldwide and steadily increasing global populations.

I can’t wait until the mow-free lawn becomes a product – but we’re likely many years away from that happening. Until then, I’ll keep mowing – or just replace my lawn with Field Turf.