Stories tagged USGS

Nov
16
2011

If you look at the U.S. Nuclear Regulatory Commission’s interactive map of nuclear power plants in the United States, you will see several in states bordering the Atlantic Ocean. This prompted the Nuclear Regulatory Commission to request the U.S. Geological Survey (USGS), along with other governmental and academic partners, to research the potential for tsunamis to strike the U.S. Atlantic and Gulf of Mexico coasts, and prepare maps using sonar (originally an acronym for SOund Navigation And Ranging). Note that the March 11, 2011 earthquake near Honshu, Japan, created a tsunami that resulted in a nuclear disaster that is still being remediated.

NOAA Research Ship Nancy Foster: Nancy Foster supports applied research primarily for NOAA's National Ocean Service and Office of Oceanic and Atmospheric Research.
NOAA Research Ship Nancy Foster: Nancy Foster supports applied research primarily for NOAA's National Ocean Service and Office of Oceanic and Atmospheric Research.Courtesy National Oceanic and Atmospheric Administration
Through this research, initiated about five years ago, the leading potential source of dangerous tsunamis to the East Coast was identified as landslides, either originating in submarine canyons or on the continental slope of the submerged margin of the continent of North America.

According to USGS marine geologist Jason Chaytor, many years of data collection and integration of existing data sets was needed in order to produce seafloor maps with the resolution needed to identify all of the relevant features for this study. The first field effort of this project was a multibeam bathymetric mapping cruise conducted aboard the National Oceanic and Atmospheric Administration (NOAA) Ship Nancy Foster from June 4 to June 16, 2011. Using echosounders installed on the hull of Nancy Foster, the science team mapped canyons and shelf regions at high resolution over more than 380 square miles (1,000 square kilometers) of seafloor from south of Cape Hatteras, located offshore of North Carolina, to the eastern tip of Long Island in New York.
Bathymetric Map of Continental Slope 150 km Southeast of New Jersey: High-resolution multibeam bathymetry collected in and between Baltimore and Accomac Canyons during the June 2011 cruise. Color key at left shows depths (in meters).
Bathymetric Map of Continental Slope 150 km Southeast of New Jersey: High-resolution multibeam bathymetry collected in and between Baltimore and Accomac Canyons during the June 2011 cruise. Color key at left shows depths (in meters).Courtesy United States Geological Survey


A number of submarine landslides, some previously unknown, were either partly or completely mapped. Characteristics collected include the size and number of landslides, soil and rock properties, the water depth they occur in, and the style in which they fail. This information is often used in numerical modeling of tsunamis generated by landslides.

The scientists detailed their findings in the September/October issue of the USGS newsletter Sound Waves.

Water in two states
Water in two statesCourtesy Mark Ryan
In keeping with both this week's celebration of Earth Science, and this year's Blog Action Day 2010 theme of all things watery, here's an educational web page titled Water Science for Schools created by the United States Geological Survey. The site covers topics like water basics, the water cycle, and water quality. It also has links to an ocean of water-related information.

Feb
25
2009

Last night, Louisiana Governor Bobby Jindal criticized government spending authorized by the stimulus bill, calling particular attention to "something called volcano monitoring." Hey, $140 million is a lot of money, and what does it get us? Turns out volcano monitoring is actually kind of a big deal.

Fluffy cloud of water vapor, or engine-clogging agent of doom?: Taken from Alaska Airlines jet on July 20, 2008. This photo of Alaska's Okmok volcano was taken from 37,000 feet up, looking south from about 15 miles to the north. Scientists estimate the top of the ash cloud was at 20,000 ft.
Fluffy cloud of water vapor, or engine-clogging agent of doom?: Taken from Alaska Airlines jet on July 20, 2008. This photo of Alaska's Okmok volcano was taken from 37,000 feet up, looking south from about 15 miles to the north. Scientists estimate the top of the ash cloud was at 20,000 ft.Courtesy Phil Walgren, Alaska Volcano Observatory (USGS) and Alaska Airlines

It teaches us a lot about earth processes, of course, but some folks aren't swayed by talk of scientific advancement.

An argument for everyone is that monitoring enables authorities to plan and implement evacuations when necessary.

"The USGS has issued several warnings over the past 10 years, though predicting the timing and size of eruptions remains a difficult task.

Volcano monitoring likely saved many lives — and significant money — in the case of the 1991 eruption of Mount Pinatubo in the Philippines (where the United States had military bases at the time), according to the USGS.

The cataclysmic eruption lasted more than 10 hours and sent a cloud of ash as high as 22 miles into the air that grew to more than 300 miles across.

The USGS spent less than $1.5 million monitoring the volcano and was able to warn of the impending eruption, which allowed authorities to evacuate residents, as well as aircraft and other equipment from U.S. bases there.

The USGS estimates that the efforts saved thousands of lives and prevented property losses of at least $250 million (considered a conservative figure)."

Still not convinced? Here's another benefit: volcano monitoring keeps our air routes safer, too. See, a pilot can't easily tell the difference between an ash cloud and a regular cloud. But ash clouds can damage flight control systems and kill jet engines. Don't think that's really a big problem? Some 10,000 passengers and millions of dollars' worth of cargo are ferried by US aircraft over the North Pacific every day, and there are 100 potentially dangerous volcanoes under those air routes.

Suddenly "volcano monitoring" doesn't seem like a goofy piece of esoteric research...

Check out the US Geological Survey (USGS) webpage for Minnesota, with news releases of interest, real-time data, and highlighted links. (Other states available, too.) Today, for example, would be an interesting day to check out real-time water data, or the MN draught watch.

May
25
2005

The United States Geologic Service has launched a website which shows the probability of an earth-shaking event in any spot for California over the next 24 hours. The model is most useful in predicting aftershocks — small tremblers that follow a large quake. Those large quakes remain almost impossible to predict. But knowing if an aftershock is due will help Californians prepare their homes and keep damage to a minimum.

Earthquakes occur when two pieces of the Earth's crust collide, divide, or scrape past one another. The dividng line between two such pieces is called a fault line. Many fault lines run through California, so they have lots of earthquakes. Minnesota has no fault lines, so earthquakes here are very rare.

Read more about earthquake forecasting