Stories tagged Earth and Space Science

Oct
23
2013

With the announcement of the Ultimate Dinosaurs: Giants of Gondwana exhibit comming to the Science Museum of Minnesota, I was thinking back to all the questions I have had regarding dinosaurs. Tyrannosaurus rex: the Tyrant Lizard King on display at the Royal Tyrrell Museum in Drumheller, Alberta.
Tyrannosaurus rex: the Tyrant Lizard King on display at the Royal Tyrrell Museum in Drumheller, Alberta.Courtesy Mark Ryan

Questions like: "Who gets to name Dinosaurs?" "What is this dinosaur named after?" and "What does this name mean?". I thought that I'd take some time here to answer these questions.

Oct
14
2013

Typical Paleozoic fossils from Minnesota: This year's National Fossil Day theme is Paleozoic fossils. Minnesota Paleozoic rocks hold an abundance of such fossils dating from the Late Cambrian though the Late Ordovician Periods.
Typical Paleozoic fossils from Minnesota: This year's National Fossil Day theme is Paleozoic fossils. Minnesota Paleozoic rocks hold an abundance of such fossils dating from the Late Cambrian though the Late Ordovician Periods.Courtesy Mark Ryan
It's Earth Science Week and this year's celebration centers around maps and mapping and their importance in geology and other earth sciences. Then on Saturday, October 19th from 1-4pm, the Science Museum of Minnesota is celebrating National Fossil Day with some special fossil-related exhibits throughout the museum. This year's theme is Paleozoic life, which is exactly the types of fossils commonly found in the southern half of Minnesota. Unfortunately, the official National Fossil Day website is closed due to the US government shutdown that continues, but that shouldn't stop anyone from celebrating fossils. Join us Saturday for some fossil fun.

LINKS
OneGeology mapping webite
Minnesota Geological Survey maps
Fossil hunting in Lilydale (closed indefinitely due to a spring 2013 tragedy)
Collecting fossils in Minnesota

Oct
07
2013

Enrolled trilobite: The trilobite's strategy of rolling itself up into a ball for protection dates back to some of its earliest known ancestors in the fossil record. This fossil trilobite (Isotelus?) was found in Late Ordovician shale in St. Paul, Minnesota.
Enrolled trilobite: The trilobite's strategy of rolling itself up into a ball for protection dates back to some of its earliest known ancestors in the fossil record. This fossil trilobite (Isotelus?) was found in Late Ordovician shale in St. Paul, Minnesota.Courtesy Mark Ryan
A new study appearing in Biology Letters shows that trilobites - everyone's favorite prehistoric water bug - developed an effective survival strategy much earlier than previously thought.

Trilobite fossils from Early Cambrian rock formations in the Canadian Rockies and elsewhere lend evidence that some of the earliest trilobites used enrollment (i.e rolling themselves up into a ball like an armadillo) to protect themselves from predators or the environment. Trilobite fossils found here in Minnesota are several million years younger dating back to the Late Cambrian through Late Ordovician Periods (500 - 430 mya) and are often found enrolled. It was an effective survival strategy.

Trilobites were arthropods, which meant they possessed exoskeletons, segmented bodies and jointed appendages. Their closest extant relative is the horseshoe crab. Trilobite bodies - for the most part - were comprised of a head (cephalon) positioned on a body (thorax) that was divided into three lobes: essentially an axial dividing a left and right pleura, and a tail (pygidium). The mouth (hypostome) was located on the underside. It's thought that most early trilobites were predators and/or scavengers who spent their lives roaming the sea floors looking carcasses, detritus or living prey to feed upon. Most trilobites possessed complex eyes (although some were eyeless). Like other arthropods (e.g. today's lobsters), trilobites would outgrow their exoskeletons, discarding them (molting) as they grew in size or changed shape. Their newly exposed soft skin soon hardened into a new, tough, outer casing. Once hardened, their segmented exoskeletons (composed of calcium carbonate) were ventrally flexible, giving them the ability to roll up into a ball should they need sudden protection from whatever threatened them.

Some early trilobite forms from Middle Cambrian-aged fossils had been viewed as incapable of enrolling but the new research based on much older fossils found in mudstones in the Canadian Rockies in Jasper Park pushes back the origins of the strategy to some of the earliest trilobites to appear in the fossil record (Suborder Olenellus). These appeared 10-20 million years earlier at the very beginnings of the Cambrian Period and show evidence of having already developed the ability to enroll.

Trilobites in some form or another existed across a span of more than 270 million years, a very successful run by any measure. The enrollment strategy certainly contributed to their longevity. Although trilobites were already in decline, the last of their kind were wiped out in the great extinction event that marked the end of the Permian Period and the start of the Triassic. They weren't the only casualty of the extinction: nearly 90 percent of Earth's species were terminated along with them.

Even though trilobites are extinct (they died out in the Permian Mass Extinction along with around 90 percent of Earth's species) they were an extremely successful and adaptable life form. No wonder they remain today a favorite among fossil collectors.

SOURCE and LINKS
Paper at Biology Letters
Major Trilobite features
A Guide to the Orders of Trilobites

Oct
02
2013

Gravity: Do they get the science right in the new action film Gravity?
Gravity: Do they get the science right in the new action film Gravity?Courtesy Wikipedia
Film goers will have the chance to travel through space this weekend with the blockbuster movie "Gravity" hitting the theaters. Its a ficticious story about two American astronauts dealing with disaster during a space shuttle mission.

I've come to expect Hollywood to place loose and easy with actual science when it comes to movies with scientific themes. And then today I stumbled upon this article in Time by Jeffrey Kluger, the co-author, with astronaut Jim Lovell, of Lost Moon: The Perilous Voyage of Apollo 13, which was the basis of the Apollo 13 movie released in 1995.

He applies his extensive space knowledge to fact check what's depicted in the new George Clooney/Sandra Bullock film. Here's his analytical summary: "So, that’s a lot that Gravity gets wrong. But you know what? So what? The shuttle, space station and spacesuits are painstakingly recreated; the physics of moving about in space—thrusts requiring counterthrusts, spins requiring counterspins, the hideous reality that if you do go spiraling off into the void your rotation never, never stops—are all simulated beautifully, scarily and accurately."

Click on the link above to get detailed analysis of what's scientifically right and wrong with Gravity.

Have you seen the film? What do you think about its accuracy in portraying the science of living and traveling in space?

Sep
28
2013

A lake carrier heads out on Lake Superior from Duluth: As with the world's oceans, researchers have now detected plastic pollution in all the Great Lakes.
A lake carrier heads out on Lake Superior from Duluth: As with the world's oceans, researchers have now detected plastic pollution in all the Great Lakes.Courtesy Mark Ryan
Over the past couple years, Science Buzz has posted several stories (here and here) about the humongous patches of garbage and plastic debris found floating in the world's oceans. It's a serious problem and one that should raise red flags for anyone concerned with the Earth's environment. But even more troubling is the recent news that plastic particles have now been found in all five of the Great Lakes lining the border of the USA and Canada. Unlike the large globs of plastic clogging areas of the ocean, the plastics polluting the Great Lakes are microscopic particles detectable only in a microscope. But they're no less disturbing.

A team of researchers led by Dr. Sherri “Sam” Mason, professor of chemistry at SUNY-Fredonia has been gathering water samples and reported finding high concentrations of plastic particles in the chain of freshwater lakes. One of the researchers involved is environmental chemist Lorena Rios-Mendoza from University of Wisconsin-Superior. Both she and Mason have studied the Great Trash Island (aka Trashlantis) in the Pacific Ocean but has now turned their attention to the Great Lakes.

Most of the plastic found in the water is visible only under a microscope, but has been found in all five of the Great Lakes, both in the water column, and in lake sediment. The amount of micro-plastic varies between lakes with Lake Erie - the shallowest and smallest by water volume - containing the largest ratio and Lake Superior - the largest and most voluminous - a much smaller ratio. But it doesn't matter; the point is that we're polluting some of our important sources of fresh water with plastic.

It's thought that cosmetics with could one of the sources, since the industry relies heavily on using micro-beads in its products. These tiny plastic particles used on our faces, skin, and teeth, eventually get washed off into the water supply where they're too small to get filtered out. But cosmetics certainly aren't the only source. Plastic refuse obliterates the shoreline in Haiti
Plastic refuse obliterates the shoreline in HaitiCourtesy tedxgp2
Think of the ungodly amount of plastic material we use and discard every year. Surprisingly, only about five percent of the bags, bottles, cups, electronics, etc. get recycled; most plastic trash ends up in landfills where it slowly degrades and eventually finds its way into the world's favorite garbage dump: the oceans.

“We have no idea how long some of these plastics stay in the ocean, could be more than 40 years,” Rios-Mendoza said. She also worries if organic toxins in the water can attach themselves to the tiny plastic particles, and end up in the food chain. In this regard, Rios-Mendoza has been sampling Great Lake fish to see if such toxic particles are present in their guts.

It's important to remember that only 3 percent of the world's water is freshwater and the five Great Lakes - Superior, Huron, Michigan, Ontario, and Erie - together contain 20 percent of that freshwater. That's a large portion of a relatively scarce and essential life ingredient. Last fall, I posted an interesting graphic that illustrates nicely Earth's total water supply versus fresh water and puts things in perspective.

Lake Superior: Plastic pollutants have now invaded the upper Great Lake.
Lake Superior: Plastic pollutants have now invaded the upper Great Lake.Courtesy Mark Ryan
Rios-Mendoza and Mason have been collaborating with a research and education group called 5Gyres Institute that monitors and studies garbage patches found in five subtropical gyres in the world's oceans. Rio-Mendoza presented a preliminary study of their work on the Great Lakes at a recent meeting of the American Chemical Society. The team's future studies involve pinpointing the sources of plastic pollution and acquiring a better understanding of how plastics degrade in the environment.

"We all need to become aware of how much plastic we use in our lives and avoid using single-use products. Don’t buy water in plastic bottles or cosmetic products with micro beads. Bring re-usable bags to the store with you. Simple things like this make a big difference, but it’s also important to keep talking about this issue and raising awareness about how it affects the Great Lakes and the world’s oceans.” --- Dr. Sherri Mason“

By the way, here in Minnesota, and situated at the western tip of Lake Superior, the city of Duluth was recently proclaimed to have the best tasting drinking water in the state. By best-tasting, I'm assuming they mean it has no taste whatsoever since water is described as a colorless, tasteless liquid. Whatever the case, I always thought Duluth's drinking water was the best while growing up there (my grandparents lived in a Twin Cities' suburb and I never liked the taste of their softener-treated water).
In another water-related story, it's estimated that life on Earth can survive for at least another 1.75 billion years until we move out of the habitable zone and our oceans (and other water sources) will evaporate in the increased heat. So it's probably best that we take care of what water we have - it needs to sustain us for a long time.

SOURCE and LINKS
National Geographic story
Red Orbit story
The World's Largest Dump
The Great Pacific garbage patch
Star Tribune story on Duluth's water

Sep
16
2013

Fossil of Hallucigenia in Burgess Shale
Fossil of Hallucigenia in Burgess ShaleCourtesy ap2il via Flickr
One of the strangest creatures to emerge from the famed Burgess Shale in the mountains of British Columbia, is the rightly named Hallucigenia, a strange spiky, wormlike creature that once scuttled across the Cambrian sea bottom more than 500 million years ago. Originally considered a totally unique (and baffling) creature, Hallucigenia has now been linked to other similar-aged wormlike creatures found around the world.

Hallucigenia first came to light in 1909 after Charles Doolitle Walcott, an expert in trilobites and secretary of the Smithsonian Institute, discovered a Lagerstätte in the mountains of British Columbia that was unlike any other found before.

Location of Walcott Quarry as seen from Field, BC
Location of Walcott Quarry as seen from Field, BCCourtesy Mark Ryan
Located in Yoho National Park on a steep slope between Mount Field and Wapta peak above the railroad town of Field, B.C., Walcott's quarry produced some of the strangest creatures - many of them soft-bodied and rarely found in the fossil record. The rock section, previously known as the Stephens Formation became known as the Burgess Shale, after nearby Burgess Pass. In the years following the discovery, Walcott and other scientists studied the strange fossils in an effort to decipher them and the environment in which they had lived and died.

Because of the high degree of preservation, the creatures that made the fossils were most likely buried suddenly in some sort of giant underwater mudslide that quickly entombed an entire marine community in an anoxic environment where decomposition was stifled. A perfect environment for preserving the soft-bodied tissue.

Display model of Hallucigenia: Royal Tyrrell Museum in Drumheller, Alberta
Display model of Hallucigenia: Royal Tyrrell Museum in Drumheller, AlbertaCourtesy Mark Ryan
Some of the Burgess Shale denizens appeared to be of completely new and unknown phyla with bizarre and unfamiliar body plans and no known descendents in the modern age. Hallucigenia certainly led the pack in this department. The tiny strangely constructed worm was only about an inch in length and confounded Walcott and other scientists for more than a century. They couldn''t even say for sure which side was up or down. Early Hallucigenia fossils showed a row of seven tentacles along one side. The opposite side contained seven sets of stiff spikes that were interpreted to be legs. A truly bizarre, aptly named freak-show creature that would be right at home in your average nightmare.

New evidence can often turn an old idea on its ear - or in this case, on its back. Recent scrutiny of newer, better-defined Hallucigenia fossils has revealed another set of "tentacles", leading scientist to realize they had Hallucigenia all flipped around. What they once thought was its top side was actually its bottom. Its dorsal "tentacles" were actually its legs. And its spiky "legs" belonged on its back, probably to serve as protection against predators.

This information along with a new study published in Proceedings of the Royal Society B now places Hallucigenia within a group of other worm-like creatures whose fossils are found around the world, including China, Canada, Great Britain, and Australia. It also links it to a living group - Onychophora - the velvet worms that mostly inhabit the tropical forests of the Southern Hemisphere.

"They may not be exactly the same species, but they are all probably related to the same group of worm-like creature that we call lobopods," said Dr. Jean-Bernard Caron, curator of invertebrate paleontology at the Royal Ontario Museum and the study's lead researcher. Caron is an expert in Burgess Shale fossils and his study of Hallucigenia and other fossils from the formation continues to glean new knowledge about the strange creatures that existed in the so-called Cambrian Explosion. Check out Caron's Burgess Shale website. It's full of great information about the quarry and the incredible fossils found there.

Burgess Shale location: Walcott Quarry sets on steep slope in valley between Mt. Wapta and Mt. Field.
Burgess Shale location: Walcott Quarry sets on steep slope in valley between Mt. Wapta and Mt. Field.Courtesy Mark Ryan
Walcott's Burgess Shale quarry has been designated a World Heritage site. The only way to visit it (or the fossil fields on nearby Mt. Stephen) is through guided hikes led by either Parks Canada or The Burgess Shale Geoscience Foundation. The 10 hour round-trip hike (rated moderate to difficult) takes participants up 2500 feet in elevation to Mt. Fields and requires reservations and a deposit. Fossil collecting is prohibited but the views are said to be spectacular.
­
SOURCE and LINKS
The Province story
The Burgess Shale at Smithsonian website
Dr. Caron's Burgess Shale website
Parks Canada Burgess Shale info

Aug
07
2013

A long-buried, underwater forest of Cypress trees was recently discovered in the Gulf of Mexico. The forest, estimated to be about 50,000 years old, was once buried under tons of sediment, heading toward possible fossilization, until the natural forces (most likely 2005's Hurricane Katrina) riled up the Gulf Coast waters and uncovered it again. Hundreds of stumps and fallen logs - some huge - covering 1.3 square kilometers can now be seen in 60 feet of water, 10 miles off the coast of Alabama. The Cypress forest once populated the area around the Mobile-Tensaw Delta when the Gulf's coastline was farther south, and the water level was 120 feet lower than it is today. As the climate began to warm, rising sea levels eventually drowned the forest. The trees all died but oxidation and decomposition were halted as a constant rain of delta silt covered the forest for thousands of years. When cut, the well-preserved wood still smells as fresh as living Cypress, but now that the forest has been uncovered again, wood-boring marine animals are back at work tearing it down.

Live Science story

Jul
24
2013

Green River Formation slab: The head end of Lepisosteus has been partially prepared.The rest of the fossil is hidden beneath a layer of rock matrix.
Green River Formation slab: The head end of Lepisosteus has been partially prepared.The rest of the fossil is hidden beneath a layer of rock matrix.Courtesy Mark Ryan
I've had the great fortune of being able to volunteer in the paleontology lab at the Science Museum of Minnesota. I'm in my fourth month there and it's been a real blast. My first project was preparing (cleaning) the skull of a small oreodont collected from the White River Formation in Wyoming. This is the same formation exposed in the fossil-rich South Dakota Badlands. By cleaning, I mean removing all the rock (matrix) in which the skull is encased. I've also helped patch up the casts of a couple of lambeosaurus skulls, and spent a few days puzzling over a crocodile skull reduced to about 1000 pieces.

Removing matrix: Science Museum of Minnesota fossil preparator Becky Huset uses an air scribe to methodically remove the thin rock veneer covering the remains of Lepisosteus, a fossil gar.
Removing matrix: Science Museum of Minnesota fossil preparator Becky Huset uses an air scribe to methodically remove the thin rock veneer covering the remains of Lepisosteus, a fossil gar.Courtesy Mark Ryan
At the moment, preparators been working on the remains of a 52 million year-old gar collected from the Green River Formation in southwestern Wyoming. Most of the work is being done by the more experienced volunteers in the lab but I've been able to help a little, taking my turn with the air scribe to reveal some caudal scales in their rocky grave. This particular specimen, an ancient member of Lepisosteus, was collected in Lincoln County, Wyoming. It's fascinating work uncovering something that last saw sunlight more than 50 million years ago. Now, at least, its remains can bask in the glare of the paleo lab's artificial lights.

Lepisosteus tail comes to light: SMM paleo lab technician, Kay Blair, works at revealing the 52 million year-old gar's tail rays and posterior scales.
Lepisosteus tail comes to light: SMM paleo lab technician, Kay Blair, works at revealing the 52 million year-old gar's tail rays and posterior scales.Courtesy Mark Ryan
Fifty some million years ago, the gar lived in a large body of water known as Fossil Lake, one of three intermountain lakes that existed at different times in a sub-tropical environment in that part of Wyoming. The intermountain basin in and around the lake teemed with both floral and faunal life that over about 4000 years lived and died and were fossilized forming one of the great Lagerstätten in the world. The surrounding mountains were composed mainly of limestone, and the rivers and streams eroding those mountains carried high levels of calcite (CaC3) into the lake, resulting in a high sedimentation rate that added to the ideal fossilization environment.

(More about the Green River lakes and fossils in previous Buzz story).

Most of the fossils coming out of the Fossil Lake strata have been fossilized by a process called permineralization, where mineral-rich water permeates all the spaces and pores in the skeleton and the minerals (in this case calcite) crystallize out of the water replacing bone material down to the cellular level. Some carbonization is also involved. This process depletes the remains of volatiles and is caused by the heat and pressure of sediment compression, which also crushes and flattens the fossils, and tends to color them either brown or black.

Scattered bones: The fossil gar's head was blown apart by gases that built up during its decomposition.
Scattered bones: The fossil gar's head was blown apart by gases that built up during its decomposition.Courtesy Mark Ryan
That's very apparent with our gar. Although only portions of the fish's remains have been exhumed (its head and tail) the fossil is already providing some information about what followed the gar's death (taphonomy). Lepisosteus favored the shallow, swampy edges of Fossil Lake and when it died it probably floated on the surface for a while giving bacteria time to enter its mouth and gills and begin their decomposition work before the corpse was buried beneath sediments.

We can deduce this scenario by the manner the remains are preserved. The bones of the gar's skull and jaws are scattered and jumbled in a mish-mash of bones and scales. The head appears to have been blown apart, and that's probably what happened. As the microbes feasted on the fish's head, they released gases inside the corpse which built up, and bloated the gar to a point where it burst from the internal pressure. The mandibles, the cranium, and other bones broke apart before settling to the bottom and are disarticulated. The very end of the tail, however, shows no such disruption. The rays of the caudal fins looking almost as fresh as they did when the gar died half a million centuries ago.

Scales as tough as nails: In life, an enamel-like tissue called ganoin made the diamond-shaped scales of Lepisosteus tough and predator-resistant.
Scales as tough as nails: In life, an enamel-like tissue called ganoin made the diamond-shaped scales of Lepisosteus tough and predator-resistant.Courtesy Mark Ryan
The scales of its mid-section are beginning to come to light. These diamond-shaped structures were covered with ganoin, an enamel-like tissue containing less than five percent organic material. The mineralized tissue gave Lepisosteus a very tough, predator-resistant exterior when it was alive but not so resistant to the bacteria that attacked the gar from the inside after it died. Preliminary work of the mid-section is showing signs of decomposition there but further work required.

One of the major experts on the fossils found in the Green River Formation is Lance Grande, a graduate of the University of Minnesota (and elsewhere) who has been working at Chicago's Field Museum for the past few decades. In the early '80s, Dr. Grande wrote a hefty bulletin titled Paleontology of the Green River Formation for the Wyoming Geological Survey, and has now come out with a new book titled The Lost World of Fossil Lake: Snapshots from Deep Time. In a recent television interview, Dr. Grande talked about his book and about the fossils found in the Green River Formation.

Hundreds of thousands of finely preserved fossils from Fossil Lake deposits can be found in museum displays and on rock shop shelves world-wide. The best fossils were buried quickly and preserved in near pristine condition. Many of these come from what used to be the deep center of the lake where conditions were probably anoxic and burial fairly swift. At times during Fossil Lake's history events like seasonal algal blooms or rapid turnovers of the water column occurred and caused massive die-offs of fishes. Other fish, like our gar, probably just died a regular death.

Progress so far: After several weeks of preparation, the remains of Lepisosteus are becoming more defined.
Progress so far: After several weeks of preparation, the remains of Lepisosteus are becoming more defined.Courtesy Mark Ryan
Every fossil tells a story, and our gar is no exception. Back in the Eocene epoch it lived for a short time in the then subtropic environment of southwest Wyoming, doing what gars do before it finally died along the shores of Fossil Lake. After it was buried, it was fossilized, dug up, and transferred to the collections vault of the Science Museum of Minnesota. A few months ago, it was retrieved from the vault and brought into the paleo lab where it's been worked on each week by several people. Whatever the gar was thinking when it was alive back in the late Eocene, you can be sure it was unaware that its post-mortem life would provide hours of detailed work, study and fascination for another curious life-form 52 million years later.

SOURCES AND LINKS

Green River Fossil Adventures
Fossil Butte National Monument
More about Green River Formation at Fossil News
The Green River Formation: A Fossil Fiesta
Green River Info at UCMP Berkeley

Apr
20
2013

I had an interesting discussion related to the many and dramatic ways a person would perish when exposed to the vacuum of space recently. We discussed the many dramatic and horrific things that would happen. Blood boiling, eyes popping out... Turns out to be a lot less dramatic. Here is what NASA has to say about what happens to the body when exposed to the vacuum of space.

If you don't try to hold your breath, exposure to space for half a minute or so is unlikely to produce permanent injury. Holding your breath is likely to damage your lungs, something scuba divers have to watch out for when ascending, and you'll have eardrum trouble if your Eustachian tubes are badly plugged up, but theory predicts -- and experiments confirm -- that otherwise, exposure to vacuum causes no immediate injury. You do not explode. Your blood does not boil. You do not freeze. You do not instantly lose consciousness.

Various minor problems (sunburn, possibly "the bends", certainly some [mild, reversible, painless] swelling of skin and underlying tissue) start after ten seconds or so. At some point you lose consciousness from lack of oxygen. Injuries accumulate. After perhaps one or two minutes, you're dying. The limits are not really known.

You do not explode and your blood does not boil because of the containing effect of your skin and circulatory system. You do not instantly freeze because, although the space environment is typically very cold, heat does not transfer away from a body quickly. Loss of consciousness occurs only after the body has depleted the supply of oxygen in the blood. If your skin is exposed to direct sunlight without any protection from its intense ultraviolet radiation, you can get a very bad sunburn.

At NASA's Manned Spacecraft Center (now renamed Johnson Space Center) we had a test subject accidentally exposed to a near vacuum (less than 1 psi) in an incident involving a leaking space suit in a vacuum chamber back in '65. He remained conscious for about 14 seconds, which is about the time it takes for O2 deprived blood to go from the lungs to the brain. The suit probably did not reach a hard vacuum, and we began repressurizing the chamber within 15 seconds. The subject regained consciousness at around 15,000 feet equivalent altitude. The subject later reported that he could feel and hear the air leaking out, and his last conscious memory was of the water on his tongue beginning to boil.

So, bad things clearly happen. Just not the very dramatic bad things I, and lots of others, had previously imagined.