Stories tagged Scientific Enterprise

Sep
18
2010

Mission accomplished

Making the impossible, possible - one prize at a time. This is the idea behind the X-prize movement. Flying into space, cleaning up oil spills, landing on the moon, or producing safe, practical cars that get 100 mpg are becoming reality as teams compete to win X-prizes.

To drive innovation, offer the right prize and human nature will do the rest.

Edison 2 wins $5 million with their "Very Light Car"

Learn more about the automotive X-prize winners

X-Prize.org
Scientific American
CrunchGear
Wired

Sep
05
2010

Wendy Schmidt oil cleanup X challenge

Cleaning up oil spills costs big money. BP says the Gulf cleanup cost is $8 Billion. Hoping that next time we can do it better, faster, and cheaper, Wendy Schmidt has offered $1.4 Million in prizes to inspire a new generation of innovative solutions.

A $1 Million Prize will be awarded to the team that demonstrates the ability to recover oil on the sea surface at the highest oil recovery rate (ORR) and the highest Recovery Efficiency (RE).

If you are interested click here for the competition rules.

MIT robotic seaswarm vehicles

MIT may have a jump on the competition with their Seaswarm project. Last week they showed off what looked like a solar powered treadmill that lapped up spilled oil. Using GPS and wireless communication, a swarm of these devices autonomously coordinate their movements.

"We envisioned something that would move as a rolling carpet along the water and seamlessly absorb a surface spill," said MIT researcher Assaf Biderman. "This led to the design of a novel marine vehicle -- a simple and lightweight conveyor belt that rolls on the surface of the ocean, adjusting to the waves." Computerworld

They estimate that 5000 of their robotic sea-swarm vehicles could clean up a Gulf sized spill in a month.
.

Sep
03
2010

I've been thinking about cars a lot lately as I reflect on sustainable technologies and wait for the Th!nk to be sold in America. Even though cars aren't the worst offender when it comes to global warming, their impact is significant and I itch for the kinds of innovation that will reinvent the way we live again. So I hope you enjoy coming along on this little thought journey.

The Doble: A rad steam car that could have made steam the power of choice.
The Doble: A rad steam car that could have made steam the power of choice.Courtesy Norbert Schnitzler

I wasn't much interested in cars (beyond them getting me to work) until I had to research the history of automobiles for an exhibit. What got my attention was the process of innovation. In the late 1800s, there were three major technologies vying for supremacy: steam, electricity, and internal combustion.

The Detroit Electric: Seeing this ad and reading about new EVs makes me feel like I'm in a time warp.
The Detroit Electric: Seeing this ad and reading about new EVs makes me feel like I'm in a time warp.Courtesy Detroit Electric

At first, steam did best because it provided a lot of power. But steam cars took a long time to start and had to be refilled often. Ladies tended to prefer electric cars like the Detroit Electric because they were clean and silent, though they didn't go very fast, very far, or have a lot of torque. Going uphill was a pain. Early internal combustion cars were dirty and smelly, and starting one could really mess up your arm if it kicked back.

Hundreds of upstart companies created models using these three technologies with a variety of designs. Innovation was rampant. Nobody knew what a car looked like because it didn't exist before. Early cars mimicked buggies until it became clear that lowering the body on the wheels was more stable. All different kinds of designs were tried out, and companies came and went in the blink of an eye.

At first, there wasn't even a standard steering mechanism--some early cars used a tiller rather than a wheel. People could even buy engines and build their own cars at home. Over time, strong designs supported stable companies that stayed in business as others failed. It was a time of fast-paced innovation in America and other nations, and that was so exciting to think about as I researched. It sparked my imagination about our future.

The Model T: This car was available to the masses and was sold all over the world.
The Model T: This car was available to the masses and was sold all over the world.Courtesy Utah State Historical Society

I also felt a little nostalgic--steam and electric still have their advantages over internal combustion (IC). The reason IC engines became the dominant technology is that Henry Ford began mass-producing the Model T on a motorized assembly line in 1913. Although it wasn't the first mass-produced car in the US as is commonly believed (the 1901 Curved Dash Oldsmobile holds that title), the IC-driven Model T was affordable and you could buy most of the replacement parts at a hardware store.

Then in 1919, the Model T acquired one other asset--the electric starter. The starter took the danger out of starting IC engines, thereby removing one of the major setbacks of gasoline. These advantages helped cement internal combustion as the leading automotive technology, as well as establishing the success of the steering wheel.

But my nostalgia makes me wonder--what if the electric starter hadn't come around? What if Ford had made electric or steam vehicles? What if battery storage had made better progress? What would we be driving today? I think we could easily have built our transportation infrastructure to support any of those technologies.

The Citicar: I dig this little car.
The Citicar: I dig this little car.Courtesy Austinev.org

When the electric Citicar was built in the 1970s in response to the oil crisis, the company essentially started where electric cars left off in the 1920s. Part of what is taking electrics so long to catch on now is that we're having to re-invent the wheel so to speak. But I don't think that means we should lose heart. If we had spent the last 90 years working on electric vehicles, electric cars might well be running circles around internal combustion engines.

The same could be said for steam. In fact, a little known car called the Doble started nearly as quickly and easily as an IC car and could go farther before refilling, but in addition to bad management in the company, IC had already taken a strong lead by the time Dobles appeared on the market.

Far from being disappointing, my nostalgia makes me hopeful that we can return to that state of openness and innovation--that we can build on electric and other technologies to develop not just a replacement for internal combustion, but something better. When I sit with my grandchildren someday, I want to tell them the amazing story of how we avoided a crisis not by sacrifice but by being so gosh darn creative. I want to see something so cool that it makes gasoline a quaint throwback to an earlier era. And I want to see it happen for agriculture, power plants, and the economy, too.

What do you think? Is it too tall an order? Or can we invent our way to a better world? Got any ideas for how to do it?

Jul
27
2010

The Smartypants Grid

The smart grid is actually a futuristic collection of technologies that manage electricity distribution. Ultimately, they are "smarter" (more efficient) at generating, distributing, and using electricity than the current industry standards.

The Einstien Meter: Smart meters are a component of the smart grid infrastructure.  They provide the two-way communication between electricity consumers and providers with the goal of enabling consumers to manage their electricity usage and spending.  The utility providers also benefit by experiencing fewer demand spikes.
The Einstien Meter: Smart meters are a component of the smart grid infrastructure. They provide the two-way communication between electricity consumers and providers with the goal of enabling consumers to manage their electricity usage and spending. The utility providers also benefit by experiencing fewer demand spikes.Courtesy Duke Energy

Some people are getting excited about smart grids because cutting back on electricity usage is cutting back on fossil fuel consumption which is cutting back on human-driven causes of global climate change. (Are you still with me or did I lose you there?) Other people are looking forward to smart grids because they should decrease the number of brown- and blackouts experienced in the country, which improves the region's health and economy. Still more people are pumped for the smart grid because it could mean lower electricity bills for their homes.

When will the smart grid reach your hometown? That depends. Some cities already have smart grid technology, but regional adoption is set to take place on a rolling basis during the next five years and is largely dependent on whether the American people get on board.

Scientific American: How Will the Smart Grid Handle Heat Waves?

"Pretty well, once the technology to automatically respond to peak demand and store renewable energy matures."

Smart grid test cites in Harrisburg, PA, Richland, WA, and Boulder, CO have their work cut out for them this week as people across the nation crank down the A/C to battle the heat wave covering most of the continental United States. According to the Scientific American article, a regional smart grid should have the potential to excel under stressful heat wave conditions. In the meantime, utility companies and academics are working toward developing a method to better store electricity when supply exceeds demand thus creating a stockpile of electricity for times of scarcity.

Explore More:

Check out SmartGrid.gov for all things smart and grid-y. Or, if you're looking for something more technical, the Department of Energy's other smart grid website.

If you're looking for a more interactive learning experience, check out General Electric's smart grid webpage complete with narrated animations.

Of course, if you're looking to hear from academics or industry experts themselves, the Initiative for Renewable Energy and the Environment in conjunction with the University of Minnesota's Institute on the Environment and St. Anthony Falls Laboratory, are hosting Midwest's Premier Energy, Economic, and Environmental Conference, E3 2010, at the St. Paul River Center (right across Kellogg Blvd from the Science Museum) Tuesday, November 30.

Jul
13
2010

Brown gold!: This is actually the solid byproduct of a manure-to-methane operation. As you can see, it holds no fear for the owner of this bare hand.
Brown gold!: This is actually the solid byproduct of a manure-to-methane operation. As you can see, it holds no fear for the owner of this bare hand.Courtesy kqedquest
We’ve talked about the delights of cow feces before on Science Buzz, but mid-July always puts me in the mind of “brown gold” (coincidentally, the last occasion it came up was exactly four years ago today), and any time there’s talk of turning an animal into a fuel source, I get excited. (Remember that fuel cell that ran on the tears of lab monkeys? Like that.) Why not take another look?

So here you are: another wonderful story of cows trying their best to please us, before they make the ultimate gift of allowing their bodies to be processed into hamburgers and gelatin and cool jackets.

Poop jokes aside (j/k—that’s impossible), it is a pretty interesting story. The smell you detect coming from cattle farms is, of course, largely from the tens of thousands of gallons of poop the cattle produce every day. The decomposing feces release lots of stinky methane. (Or, to be more precise, the methane itself isn’t smelly. The bad smell comes from other chemicals, like methanethiol, produced by poop-eating bacteria along with the methane.)

Aside from being, you know, gross, all of that poop is pretty bad for the environment. The methane is released into the atmosphere, where it traps heat and contributes to global warming (methane is 20 to 50 times more potent than carbon dioxide as a greenhouse gas), and the poop itself is spread onto fields as fertilizer. Re-using the poop as fertilizer is mostly a good idea, but not all of it gets absorbed into the soil, and lots of it ends up getting washed away into rivers, lakes, and streams, where it pollutes the water.

Some farms have managed to address all of these problems, and make money while doing it.

Instead of spreading the manure onto fields right away, the farms funnel all the poop into swimming pool-sized holding tanks, where it is mixed around and just sort of stewed for a few weeks. All of the methane gas produced by bacteria as it breaks down the manure is captured in tanks. What’s left is a fluffy, more or less sterile, solid that can be used as bedding for the animals, or mixed in with soil, and a liquid fertilizer that can be spread onto fields.

The methane can then be used on-site to generate electricity, either by burning it in a generator, or using it in a fuel cell. (The methane is broken apart and combined with oxygen from the air to produce electricity, water, and carbon dioxide.) A large farm will produce enough electricity to power itself and several hundred other houses. (The extra electricity is just put back into the power grid and sold to the power company.)

Whether the methane is burned or used in a fuel cell, the process still creates carbon dioxide. However, CO2 isn’t nearly as bad as methane when it comes to trapping heat, and because the original source of the carbon was from plant-based feed, the process can be considered “carbon-neutral.” (Although one might argue that the fossil fuels involved in other steps of the cattle farming process could offset this. But let’s leave that be for now. It’s complicated.)

The downside is that setting up an operation to capture and process manure, and to generate power by burning it is expensive—it took about 2.2 million dollars to do it at the farm covered in the article, with about a third of that coming from grants. Still, the byproducts (electricity, fertilizer, soil/bedding) are profitable enough that the system could pay for itself over the course of a few years.

It’s amazing, eh? Out of a cow’s butt we get soft, clean bedding, liquid fertilizer, and electricity, all without the bad smell. What a world.

Jun
25
2010

Agriculture is widely understood to be one of the largest contributors of greenhouse gases in our atmosphere, which is unfortunate for two reasons: 1) greenhouse gases are a driving force of climate change, and 2) last time I checked, people still need to eat.

Literally Green Skyscrapers: In a near-future world with 9 billion people, land will be even more valuable than it is today.  Researchers have been asking themselves how we are going to feed all those new people...  What if we built high rise greenhouses?
Literally Green Skyscrapers: In a near-future world with 9 billion people, land will be even more valuable than it is today. Researchers have been asking themselves how we are going to feed all those new people... What if we built high rise greenhouses?Courtesy Curbed SF

Specifically, farming is one of the largest contributors of carbon dioxide, methane, and nitrous oxide – all greenhouse gases – in our atmosphere. The four major sources of these emissions include fossil fuel consumption, fertilizer usage, animal farts and poop (no kidding!), as well as land use change (mainly, deforestation). As serious a problem as climate change is, one of the most important truths for environmentalists to remember is that people have needs that necessarily affect the health of the environment. For example, the world’s population is currently well over six billion people who need roughly 2,000 calories from food each day. That’s a lot of food that we depend upon farmers to raise and grow for us every day! And with predictions of nine billion people occupying the Earth in a mere forty years, our global population’s appetite is growing.

However, a June 2010 study published in Scientific American says that farming’s bad rap is undeserved, and actually modern high-yield crop farming has a net reduction of greenhouse gas emissions. Say what??

Here’s how it works: What sustainability-minded scientists from many disciplines strive to do is find ways to limit (better!) or eliminate (best!!) peoples’ negative impact on the environment.

In the 1960s, farmers and researchers began to develop new methods of farming to feed the rapidly expanding population. This has been called the “Green Revolution.” The results of their studies produced modern high-yield farming, which has allowed farmers to produce more food in less space. According to the Stanford researchers, though high-yield farming is possible largely because of fertilizer use – one of the four major sources of greenhouse gas emissions on farms – it prevents land use change in the form of deforestation – another one of the four major sources of greenhouse gas emissions on farms. The key point is that the greenhouse gas emissions caused by fertilizer use is less than the greenhouse gas emissions caused by deforestation, which yields a net reduction. That is, if we had continued with pre-Green Revolution farming techniques, in order to feed today’s population, we’d be using less fertilizer, deforesting more land, and emitting considerably more greenhouse gases than we currently are.

Today, at the Institute on the Environment, the Global Landscapes Initiative continues to focus on seeking ways to secure a healthy land use future for both people and the environment. This includes researching innovative agricultural practices.

Hydroponics: Hydoponics is a method of growing plants without soil.  Weird, but true!  Instead, plants are raised in a mineral water bath.  Could this be the future of farming?
Hydroponics: Hydoponics is a method of growing plants without soil. Weird, but true! Instead, plants are raised in a mineral water bath. Could this be the future of farming?Courtesy pchic

Another Scientific American article has it’s own ideas about how to provide food to our growing population: build vertical farms. These futuristic, skyscraping greenhouses are based upon existing hydroponic greenhouses and could reduce fossil-fuel use while simultaneously recycling city wastewater. Hydroponic greenhouses grow plants without soil! Instead, they use mineral nutrients dissolved in water, allowing plants to be grown just about anywhere… including on the 34th floor. According to the article,

“A one-square-block farm 30 stories high could yield as much food as 2,400 outdoor acres…”

That’s a lot of food. A lot. Really? Is it possible? The paper’s author claims it is and that architects, engineers, designers, and “mainstream organizations” are taking note of his vertical farm concept.

Jun
14
2010

I'm sure there's a lot of jokes I could make about stereotypical tensions between nerds and jocks, but there's science to be had at the World Cup, and I'm never one to back down from an exercise in applied physics.
Vuvuzelas: Fans raise their vuvuzelas in celebration of soccer season
Vuvuzelas: Fans raise their vuvuzelas in celebration of soccer seasonCourtesy Manuguf

If you've been watching any of the matches on TV or have any friends that are, you may have heard about the controversy centered around a popular fan item - the vuvuzela. Vuvuzelas are plastic trumpets used by soccer fans in South Africa to cheer on their team and goad the opponents. When blown, they can achieve decibel levels upwards of close to 130 dB. That's as loud as a loud rock concert or a jet at take off.

It's gotten to the point that referees and coaches want the horns banned, and fans at home are complaining that the noise is drowning out network commentary.

Now for the science. Editors at the German blog Surfpoeten have pointed out that because the horn has a simple acoustic fingerprint (tones at 233, 466, 932, and 1864 Hz), very basic filtering software can remove the vuvuzeula drone from broadcast media (original German link). This may not prevent the players on the field from having to endure the noise, but it could at least help out the estimated 125 million people watching at home (per match).

This same idea may be in use in technology you own. Noise cancelling headphones have been around for a while. They sample ambient audio around you and play an opposing wave to cancel it out. Much like with the vuvuzelas, monotone sounds such as lawnmowers and airplane engines are the easiest to block.

Jun
13
2010

Another Solar Decathlon competition is happening, this time in Europe. The Solar Decathlon Europe 2010 is a competition between 20 college and university student teams to design and build the best solar home. The houses must use readily available products and be easy to transport and assemble.

I would really enjoy designing and living in such a house of my own. Watching teams of experts compete to design innovative, efficient, and sustainable housing is a great place to get ideas.

.

Picking the winner

SDEurope.org has a 17 page PDF download which explains how a maximum 1000 points can be earned in the 10 categories.

On the one hand, the competition will include objective methods for scoring, which will include measurable parameters such as the actual energy consumption of the houses, the capacity for solar energy capture, etc., as well as tasks performed by decathletes which reproduce domestic activities.
In addition, a number of evaluations will be made by a panel of jurors with proven experience who will judge qualities such as: architecture, innovation, sustainability, solar systems, communication and industrialization level.
The final score given to each team will be made up of a balanced combination of both objective and subjective assessments.

Related Solar Decathlon Buzz links

Jun
10
2010

The Guardian: sticking it to The Company Men!
The Guardian: sticking it to The Company Men!Courtesy USAF
Rumor Has It that the Prince of Thieves, Kevin Costner, is now The Bodyguard to the Waterworld we call the Gulf of Mexico, where Shadows Run Black... and so does the oil! He'll be putting The Big Chill on BP's oil spill, cleaning up that Untouchable crude oil with centrifugal machines developed by his company. He's sending a Message in a Bottle to the ocean (but not through The Postman): "I don't hate you for destroying the set of Waterworld! I don't want Revenge!"

But does the machine really work, or is it just a Field of Dreams? In his Testament to congress, Costner argued that it does, and that congress should require oil companies to all buy these machines. Will they? It may depend on a Swing Vote! Only time will tell if this modern-day marine Wyatt Earp can help create A Perfect World with his fancy Tin Cups!

I'm Not Funny, and should maybe Never Write on Buzz Again!

Dances with Wolves!

May
26
2010

Little Dog can handle rough terrain

Remember Big Dog, DARPA's new robotic pack carrying robot?
Now, Little Dog shows off, navigating rough terrain and obstacles.

(Little Dog) methodically moves over obstacles much larger than its leg length and body size—it measures 11.8 by 7.1 inches (30 by 18 centimeters), stands 5.5 inches (14 centimeters) tall and weighs 4.9 pounds (2.2 kilograms). Scientific American