Stories tagged Cells

Jul
03
2008

Can you spot the nightmare?: There he is!
Can you spot the nightmare?: There he is!Courtesy FasterDix
Okay. Now I know what you’re thinking: “Every scene in Willow is frightening. Each scene is, in fact, somehow the most frightening scene. Will all of that become real too?”

Don’t worry, my doves, don’t worry.

You won’t be pursued through the forest by horrible pig dogs.

You won’t be puked on by a magic baby.

Your ethnicity won’t be slandered by drunks and soldiers.

You will not be captured and molested by hideous little rat men.

Monkeylike trolls will not chase you through derelict castles.

You won’t have to watch one of those awful trolls turn inside out and morph into a dragon. And you will not have to fight that dragon.

A shirtless Val Kilmer will not threaten you.

There will not be epic battles, nor attempted baby sacrifices.

You will not be stabbed by a man with a skull mask and an unspeakable caveman face.

A metal brazier will not chase you around a lightning-lit tower.

No wands will be brandished at you.

The town loudmouth will not belittle you in front of your family.

So, all in all, there’s relatively little to be concerned about. That said, there is one more most frightening scene to consider.

Do you remember when the army of Madmartigan and Airk Thaughbaer first laid siege to the fortress of Nockmark? Before Willow was able to fully control the powers of Cherlindrea’s wand and return Fin Raziel to her human, albeit greatly aged, form? You’ll recall that as soon as Airk, Madmartigan and Sorsha confront Bavmorda at the gates of Nockmark, the evil enchantress turns the whole of the attacking army into pigs. Once they were pigs things don’t seem so bad, but the process of turning into pigs was horrible to watch. There were hoof-hands everywhere, and emerging piggy snouts, and tusks, and oinking, and everybody looked really sweaty. It was very frightening to see, and it’s happening in our own plane of existence: human-pig hybrids have been given the go-ahead in England.

Careful examination of the story clearly indicates that half human, half pig creatures like those in Willow are neither the intent here, nor are they actually possible from these experiments. But I tend to believe what I imagine is the case more than what I’m old is the case.

If you do want to waste your time with what you’re told, however, listen up:
The aim of this research is in no way to create a weird pig man. Or a weird man pig. The goal is actually to put human DNA from skin cells into a pig egg that has had its chromosomes removed, and then let it develop into an embryo. In fact, the scientists involved are attempting to create an embryo with no animal DNA left in it at all (kind of ironic, I suppose).

There’s more to it, of course, but the idea is this: the human DNA put into the eggs will be DNA taken from people with a genetic heart disease. As the scientists observe the transformation from egg to embryo, they hope to better understand the molecular mechanics of the disease. That information could then be used to create better treatments for people living with related heart conditions. None of the “hybrids” will develop past the very first stages of being an embryo (basically a featureless sphere of cells).

Or, if you’re into letting your gut and imagination do your critical thinking for you…prepare yourself for Island of Doctor Moreau Earth.

Jun
25
2008

She's actually 60 years old: And look at her huge, weird head.
She's actually 60 years old: And look at her huge, weird head.Courtesy DistortedSmile
The more I learn about meditation, the more intrigued I am by it. I mean, meditation has it all: it can allow you to freeze yourself in a block of ice, walk across a bed of hot coals, and look like you’re asleep without actually being asleep (this is all according to what I learned from television, anyway).

Now there’s a new item, to add to the list of meditation-induced superhuman qualities: a huge, swollen brain. Isn’t that what you’ve always wanted? A rippling, throbbing, , Humungus, brain? Now’s your chance.

Researchers at Harvard have shown that regular meditation thickens your cortex. Generally the cortex thins as we age, but this area of gray matter, or, as some scientists call it, “thought goo,” seems to get thicker with age, at least in folks who meditate.

The study took a group of 20 experienced meditators, and compared their brain scans with those of 15 nonmeditators. During the brain scanning, meditators meditated, and nonmeditators “thought about whatever they wanted” (so, like, cigarettes, animals in clothing, detergent commercials, and clouds shaped like stuff. You know: stuff we normals enjoy).

All participants were adults, and came from a range of professions (except for 4 of the meditators, who actually were teachers of meditation or yoga).

The scans indicated that people who meditated an average of 40 minutes a day had gray matter of increased thickness, compared to the nonmeditators. What’s more, people who had been in the habit of meditating for a longer period of time had “the greatest changes in brain structure,” suggesting that meditation was the cause for the increase in gray matter, and not that people with thick gray matter are more inclined to meditate.

The increase in thickness, it should be said, only amounts to 4 to 8 thousandths of an inch—sadly not enough to make your brain bulletproof. The difference was consistent, however between people who meditated and those who did not, and further studies are planned to examine how this change might affect the health of a meditator.

Because meditation seems to counteract thinning of the brain over time, there’s some thought that the practice could slow—or reverse—the aging of the brain.

Monks and yogis, a researcher points out, suffer from the same ailments as they age as the rest of us, but they claim an increased capacity for attention and memory.

It’s still a toss up, as far as I’m concerned. Sure, monks may enjoy a lucid old-age, but that means they sacrificed tons of time meditating in their youth, when they could have been taking hard drugs and listening to rock and roll. I suppose it just depends on where your priorities are.

Jun
20
2008

For decades, scientists have been growing microbes in their labs and watching them evolve new traits. Most of the changes tend to be simple things, like an increase in size or growth rate.

But Dr. Richard Lenski of Michigan State University (just 2 miles from my house!) recently witnessed a major evolutionary leap--as it was happening. Twenty years ago, he took a colony of E. coli, a common bacteria, and split it into 12 identical populations. He’s been watching ever since to see if the strains evolve in different directions.

A few years ago, one of them did. One of his study strains suddenly evolved the ability to eat citrate, a molecule found in citrus fruits. No other E. coli in the world can do this, not even the other strains in Dr. Lenski’s lab. Even given several extra years and thousands of extra generations, the other strains are still citrate-averse. What’s more, the bacteria evolved this mutation entirely on their own, without any prodding or genetic manipulation from the researchers.

Lenski had saved frozen reference samples of all of his strains at regular intervals. Going back and growing new cultures from these samples, he again finds that only those from one strain ever evolve the citrate-eating habit – and only those sample less than about 10 years old. Lenski figures that some mutation happened around that time in one strain – and one strain only – that would later lead to citrate eating. He and his lab are now working on figuring out exactly what that mutation is.

Jun
12
2008

Be sure to wash pigs carefully: before kissing or eating.
Be sure to wash pigs carefully: before kissing or eating.Courtesy Matt & Helen Hamm
A new study out of Ohio State University has shown that pigs raised outdoors, antibiotic-free, on “animal friendly” farms are more likely to be infected with parasites and bacteria than animals from conventional farms. That’s sort of a surprise—that pigs without antibiotics would have more…biotics

Two of the infections found in the pigs have been seen around Science Buzz recently: toxoplasma gondii, the cat poop parasite, and salmonella, that troublesome bacteria that’s been getting in our tomatoes.

Also found in the antibiotic-free pigs was the parasite Trichinella spiralis, a round worm that can cause very serious illness in humans. Only two of the six hundred or so pigs tested were found to be hosts to trichinella, but this is still a surprising figure for an organism that has been nearly eradicated on conventional farms (veterinarians usually expect perhaps one pig in fourteen thousand to contain trichinella).

So that’s kind of yucky.

But consider this: even pigs treated with antibiotics were not free of salmonella and toxoplasma. 54% of untreated pigs had salmonella in their bodies, but so did 39% of treated pigs, and while about 7% of untreated pigs carried toxoplasma bacteria, over 1% of the treated pigs did too. Also, if you’re into the cruelty-free part of natural farming (not me—I’m all about cruelty to animals) it should be noted that the piggies aren’t actually sick, they’re simply carriers of these organisms.

The scientists behind the study are careful to point out that they aren’t recommending one form of pork production over the other—each has its benefits as well as its downsides. While pigs raised antibiotic-free are more likely to have higher rates of common bacteria of food safety concern, treated pigs can “create a favorable environment for strains of the bacteria that are resistant to antibiotics.” So that’s no good.

The thing is, you shouldn’t really be worried about any of these pathogens, assuming that you handle and cook your pork properly, and don’t go around licking pigs and things.

But far be it from me to judge that sort of thing.

Jun
08
2008

Are nanomaterials safe?

Nanomaterials & health
Nanomaterials & healthCourtesy GiselaGiardino²³
Nanomaterials show promise for curing diseases. But, how can we assess the risk of these nanomaterials causing problems within the human organism. Studies in animals are expensive and time consuming. Also, different cell types can respond differently to the same nanomaterial.

A fast screening method could help separate the good from the bad

Stanley Shaw and researchers from the Broad Institute of Harvard and MIT recently tested 50 different nanoparticles--mainly particles used for medical imaging, including mostly iron-based particles, as well as several types of quantum dots. The particles also had various chemical coatings.

The researchers tested each of the nanoparticles in four different types of cells--immune cells from mice, two types of human blood-vessel cells, and human liver cells--and at four different dosages. To create the different combinations, a robotic system similar to that used for drug screening placed the nanoparticles inside tiny wells on a plate containing hundreds of separate wells. Each well contained one cell type. The screening system then detected changes in the cells' metabolism in response to the nanomaterial. Computer software analyzed the data, looking for relationships between the different particles. Technology Review

The new screening tool, described in the Proceedings of the National Academy of Sciences, could help narrow the list of nanomaterials that need to undergo animal testing.

May
22
2008

You want to do what with my DNA?: A California company is auctioning off the rights to make clones of the dogs of the five highest online bidders.
You want to do what with my DNA?: A California company is auctioning off the rights to make clones of the dogs of the five highest online bidders.Courtesy monkeyc.net
A man’s best friend could become a permanent best friend under a proposal being floated by a California company. BioArts International is offering to clone the dogs of the five highest bidders, guaranteeing that they’ll always have some version of their favorite pet throughout their life.

But before you get too excited, it won’t be cheap. Opening bid prices are $100,000. And the chief cloner is scientist from South Korea who was discredited by having faked research in an earlier cloning project. The research team has already made three cloned dogs from the DNA of dog from BioArts’ CEO. The original dog, Missy, died in 2002.

There are plenty of issues to chew on this ethical bone. The fervent anti-cloners fear that this could be the first step in human cloning. If people are willing to pony up the dough to duplicate a favorite pet, wouldn’t that stoke the fires for creating a duplicate of a favorite baby or child?

On the flip side, pro-cloners say why not continue to give people the joy and pleasures they receive from a favorite pet even after its lifetime ends.

The BioArts CEO vouches for the effectiveness of dog cloning. Missy’s clones exhibit much of the same behavioral characteristics he saw in Missy. You've got some time to round up the cash if you want to do this to your dog. The auction begins on June 18. More details are hear at the BioArts website.

So what do you think? Is this a good idea? Would you like to clone your dog? Is so, how much would you be willing to pay? Share your thoughts here with other Buzz readers.

May
14
2008

Join the fight!: Grimace is doing his part.
Join the fight!: Grimace is doing his part.Courtesy GiantGinko
Okay…I don’t want to alarm anyone, but I think it’s important that you’re all made aware of this threat before it’s too late. I mean, like, we didn’t used to be afraid of that little ball of goo until it became the blob, and now we’re in deep, deep fudge. That kind of thing.

Okay, so…ugh, why do I have to do this? Just prepare yourself, get a fresh pair of pants ready, and please, please don’t panic. Not yet. That could be dangerous.

There is…somewhere, like, out there…a bacteria that is literally a million times bigger than other bacteria. Do you understand what this means? Do you understand what “literally” means? It doesn’t mean, “I’m literally going to starve to death if I don’t get that pizza!” It means for real. For really real. And do you know what “a million” means? Of course you do. It’s like, if you had to fight another guy and his ninety nine friends, and then had to fight nine hundred and ninety nine more groups just like his, and then fight just as many people nine more times—you’d be fighting a million guys. Could you win a fight like that? No, try again, you couldn’t. So what chance do we stand against this gargantuan bacteria? You know that bacteria have no emotions, right? They’ll eat you and your new puppy, and then eat, like, a pumpkin, and they wouldn’t feel any worse about you and your lousy puppy than they would about the dumb pumpkin.

Oh, this is the worst.

Okay, okay, I was the one who said we shouldn’t panic. So let’s look at this beast rationally—maybe we can find a weakness.

What do we know? Well, the monstrosity in question, of the epulopiscium genus, is a million times the size of an E. coli bacterium. A million times bigger. That means that epulopiscium is, let’s see…about the size of a grain of salt. If you, for instance, were for some reason one-hundredth the size of a grain of salt, epulopiscium would be a hundred times bigger than you. A hundred times bigger than you! What else? Well, it seems that the bacteria only live in the stomachs of surgeonfish, in the area of Australia’s Great Barrier Reef. That’s where they live for now—the surgeonfish lives in a symbiotic relationship with epulopiscium, so there’s no reason to assume that it will keep its horrible buddy under wraps.

How can we fight this thing? Guns? What good would bullets do against something like this? Nuclear weapons? Only as a last resort. But what if… What if we could turn epulopiscium’s own size against it, like we did with King Kong when we shot him off that building?

Let’s see…Normally bacteria have to be itty-bitty because they haven’t got the specialized organelles to move nutrients around, and their DNA—of which there are only a hundred or so copies—isn’t bound in nuclei; basically their Schmidt is all over the place, so they have to be tiny to keep things working. It seems, however, that the epulopiscium is unique in that it has thousands of copies of its genome incorporated into its cell membrane. That way, if anything remarkable happens in the cell, DNA will be right there to react quickly, locally producing RNA or whatever proteins are necessary for the situation.

So that means we need to destroy its fancy DNA, and then its own bulk will bring the epulopiscium down! And what can damage DNA? Electromagnetic radiation! We need to start dumping radioactive waste into the waters of the Great Barrier Reef immediately! Stat! Ionize their fancy little DNA!

Get to it, Buzzketeers. This will be a modern-day David and Goliath story.

May
02
2008

Finger tip regenerated by "pixie dust"

Lee Spievak had the end of his finger chopped off by the propeller of a model airplane. Today it has grown back. It's all there, tissue, nerves, nail, skin, even his finger print.

Speivak's brother, Alan - who was working in the field of regenerative medicine - sent him some powder which Lee calls pixie dust. For ten days Spievak put a little on his finger. The "pixie dust" comes from the University of Pittsburgh and is made by scraping the cells from the lining of a pig's bladder.

"The remaining tissue is then placed into acid, "cleaned" of all cells, and dried out. When the extra cellular matrix (pixie dust) is put on a wound, scientists believe it stimulates cells in the tissue to grow rather than scar.

Future research proposals

Researchers are anxious to conduct clinical trials involving regeneration of an oesophagus and to re-grow burnt skin. A follow up article quoted other scientists who were skeptical of the claimed results. I recommend watching the video and then using the comments box below to tell us what you think.

Source article; BBC News

Apr
13
2008

Bristlecone pines are actually much smaller than this: So the chopping should be pretty easy.
Bristlecone pines are actually much smaller than this: So the chopping should be pretty easy.Courtesy purplekey
The world has finally gotten sick of California’s bristlecone pine Methuselah, and offered up something better.

The bristlecone pines of the White Mountains in California are some of the oldest living objects in the world, with one individual, nicknamed “Methuselah,” having been aged at around 5,000 years. Now five thousand years is older than most people I know, but I don’t think that I’d go around calling those trees “super old” or anything. More along the lines of “kind of old,” and for decades we’ve had to put up with complaints over these kind-of-old trees (e.g. “Don’t cut it down! It’s kind of old!”) Since when has something being kind of old ever stopped us from destroying it?

Well, now Methuselah won’t even be able to play that card anymore, because its kind of old woody butt has been blown out of the water by a new old tree, an 8000-year-old Norway spruce, found, ironically, in Sweden. 8000 years—I think we can safely call that “pretty old.”

While an individual trunk of the spruce may only live about 600 years, the organism will put up a new one as soon as the old trunk dies, which has allowed some of the trees to survive since just about the end of the last ice age.
A cultivated dwarf spruce: This Norway spruce was made to be small, but the ancient stunted ones in Sweden probably look about the same.
A cultivated dwarf spruce: This Norway spruce was made to be small, but the ancient stunted ones in Sweden probably look about the same.Courtesy SEWilco

The carbon-dated pretty-old tree was found in a cluster of similarly aged Norway spruces in the mountains of western Sweden, in an area that has remained untouched by commercial logging. The harsh environmental conditions of the area have forced the trees to stay very small—only about a foot and a half tall—but last several decades have brought a warmer climate to the area, and the trees have “popped up like mushrooms,” making them much easier to find in the mountainous terrain. This will also make them more fun for me to chop down when an older tree is found.

Update!
According to this article, one of the trees is 9,550 years old. There's actually a cluster of about twenty spruce that are at least 8,000 years old.

Mar
25
2008

Researchers at Veredus Laboratories and STMicroelectronics developed VereFlu™, a small and automated diagnostic test that rapidly detects all major influenza types.

Why is this significant?
Current rapid tests can detect:

  • only influenza A viruses
  • both influenza A and B viruses, but doesn't distinguish between the two types
  • both influenza A and B and distinguish between the two

None of the rapid tests provide any information about influenza A subtypes. VereFlu™ is highly sensitive, accurate and it can identify and differentiate human strains of Influenza A and its subtypes and B viruses, including the Avian Flu strain H5N1, in a single test. A test like this currently needs to be done in specialized labs and can take days or weeks for results.

From the company’s press release:

“VereFlu™ will enable healthcare professionals to effectively monitor mutations of flu viruses and quickly identify the main strain of the season,” said Dr Rosemary Tan, Chief Executive Officer of Veredus Laboratories. “This unique capability can significantly increase the effectiveness of flu vaccination and reduce public health risks associated with the emergence of a new flu virus.”

An exciting collaboration
VereFlu™ is the market’s first test which has integrated two powerful molecular biological applications into a new test the size of a fingernail. Combining Veredus Laboratories’ expertise in developing diagnostic tests and STMicroelectornics expertise in ST’s microfluidic lab-on-chip technology has created this new product. The two companies are planning to work together to develop additional diagnostic tests. They have set up a new venture in Singapore called Bio-Application Lab.

This new test sounds really cool and it got me wondering about how it works. I will contact the company and add to the post if I find out!