Stories tagged Energy Transformations

Mar
20
2014

NanoDays is a nationwide festival of educational programs about nanoscale science and engineering and its potential impact on the future.

Most events will be taking place between March 29 - April 6, 2014.
NanoDays 2008-2014 map
NanoDays 2008-2014 mapCourtesy NISE Network

NanoDays events are organized by participants in the Nanoscale Informal Science Education Network (NISE Network) and take place at more than 250 science and children's museums, research centers and universities across the country from Puerto Rico to Hawaii. NanoDays engages people of all ages in learning about this emerging field of science, which holds the promise of developing revolutionary materials and technologies.

To read more about NanoDays visit:
http://www.whatisnano.org/nanodays

To see a full list of organizations hosting 2014 events visit:
http://www.nisenet.org/nanodays/participants-2014

2014 Events in Saint Paul and Minneapolis, MN: http://www.smm.org/nanodays

To learn more about nanotechnology, science, and engineering, visit:
www.whatisnano.org

To see other nano stories on Science Buzz tagged #nano visit:
http://www.sciencebuzz.org/buzz_tags/nano

Jan
02
2014

Bright news: Due to a variety of new technological advances, electrical use in the U.S. has declined for the third straight year.
Bright news: Due to a variety of new technological advances, electrical use in the U.S. has declined for the third straight year.Courtesy Ramjar
So often, the headlines are filled with gloom and doom when reporting on energy usage, climate change and such matters. But here's some bright news.

U.S. electrical consumption has dropped down to the lowest levels since 2001. And that comes as we're using more electrical devices than ever. Here are the full details. It's the third-straight year U.S. electrical consumption has gone down.

Quickly summarizing, there are several factors for this significant drop in power use. Many major appliances have been re-engineered to be more efficient and use less electricity. Homes and buildings are better insulated and designed to keep air conditioning inside in the summer and cold out in the winter. More people are using compact fluorescent bulbs and LED lighting that consume much less electricity than incandescent bulbs.

And the trend looks to continue this year with another 1 percent drop in electrical juice consumption.

May
02
2013

Non-robotic jellyfish: Engineering researchers at Virginia Tech are building robots that mimic the efficient way jellyfish get around.
Non-robotic jellyfish: Engineering researchers at Virginia Tech are building robots that mimic the efficient way jellyfish get around.Courtesy Andy Field (Field Offie)
Researchers at Virginia Tech are working on several versions of robotic jellyfish that someday could be used by the military, or for mapping the ocean floor, or cleaning up oil spills.

Known affectionately as RoboJelly, the silicone blobs range from the size of a baseball to a giant five-foot floating monster. Each mimics the swimming technique used by jellyfish, those huffing and puffing water-bags that populate the world's oceans.

In nature, most jellyfish propel themselves by the seemingly simple expansion and contraction of their umbrella, using it to push water out like a rocket blast that propels it forward. But the fluid dynamics are a little more complicated than than just expelling out a big blast of water and moving the other way. It's more like when your cigar-smoking uncle would blow smoke rings into the air to impress you. Remember that? I do. These are called vortex rings, and it's the efficiency of the hydromedusean's self-created fluid flow that interest the VT researchers.

Students at VT's College of Engineering use thin layers of silicone - the same material used for swimming masks - to construct the robots. Electric batteries in watertight plexiglass boxes are used to power the mechanical blobs. The researchers are also looking into ways of extracting hydrogen from water to power them.

“Nature has done great job in designing propulsion systems but it is slow and tedious process," said Shashank Priya, associate professor at Virginia Tech, and the project's lead researcher. "On the other hand, current status of technology allows us to create high performance systems in a matter of few months.”

The on-going project involves a number of U.S. universities and industries, and will warrant several additional years of research before any prototypes are released for use. Besides possible military application, RoboJelly could be employed for such things as monitoring ocean currents and conditions, cleaning up oil spills, and studying sea-bottom flora and fauna.

SOURCES
Story at EarthSky.org
Virginia Tech website

Oct
31
2012

Spooky action: not just for Halloween anymore.
Spooky action: not just for Halloween anymore.Courtesy Photo and graphic by author plus Wikimedia Commons
This is a perfect post for Halloween. A really scary story involving quantum physics. Let me begin by saying that this stuff is absolutely mind-boggling. I’m not even sure I can explain it. Albert Einstein himself – the bravest theoretical physicist there ever was - called it “Spooky action at a distance”, that’s how much it scared him. What’s even more disturbing is that scientists now are reporting that this spooky action has gotten even spookier! I’m talking back-from-the-dead-zombie spooky! Let me feebly try to explain.

One dark and stormy night there were two sub-atomic particles – photons, let’s say – that are joined together like a two-headed freak show turtle. Wait, probably a bad analogy – how about this: like a set of identical twins? That works. Think of twins, Larry and Ralph. They’ve interacted with each other since birth, acting exactly the same way no matter where they were. If Larry ate a cheeseburger for lunch, Ralph had one, too. Anyway, in the world of quantum mechanics, this joining of two particles is called entanglement.

At quantum levels all rules of physics are thrown out like a rotting pumpkin on All Saints Day. As I understand it, particles don’t really exist in one particular spot or state on the time-space continuum –but rather in all their probable states at the same time. It has to do with a deal called superposition, and is all about probability. Which means until they’re measured or observed in some way, they live in a constant state of uncertainty. Once one of them gets measured, and a value is placed on it, the uncertainty is eliminated, and at that point it locks into some sort of “existence”. I think so anyway. But – and this is a really big but – just by measuring it, the particle dies. Or it’s state of uncertainty dies– I’m not sure which. Something gets killed. Does this make any sense? Not to me, but I’ll continue anyway.

So, with an entangled pair of particles, things get kind of weird. When two particles are entangled – i.e. physically interacting - with some sort of correlation (or anti-correlation), – that interaction remains no matter where they are located in relation to each other. You measure a value in one of the entangled particles, you can be certain the other particle instantly has the same value. In a correlated pair, if you see that one particle has an up spin, you’ll know right away the other has an up spin, too. In a normal world analogy, if you see Larry bobbing for apples at a party tonight, you’ll know Ralph is somewhere with a wet head.

This theory has been successfully tested several times on pairs of entangled photons separated by 80 some miles. It would matter not a whit if they were separated by a 100 billion lightyears, some unexplained force tying them together, would give the same results.

Now here comes the really scary part. Quantum physicists are now predicting that the same kind thing can happen when the two entangled particles don't even exist at the same time. This is called an entanglement swap. It involves removing a particle from one entangled pair, and using it to create a new pair with another particle removed from a different entangled pair. I know. Blah, blah, blah. But let’s see if I can help you (and me) understand.

Let’s start with an entangled pair of photons, our old pals “Larry and Ralph” again. You decide to measure Larry’s spin. It’s a down spin. So far so good. But unfortunately, your measurement leaves his twin Ralph, all alone. “You’re dead to me!” Ralph screams! And Larry is dead because you gave him a value (his spin). Ralph now wanders about by himself (with the same down spin as Larry of course). This is called disengagement. A little later, you create another entangled pair of photons, this time named “Jane and Sally”. They’re not very happy– always bickering, always fighting over whether they’re actually particles or packets of waves – you know, the usual photon sibling stuff. Anyway, after a while they become disengaged (somehow evidently without measuring and killing one – I’m confused here). Anyway, Jane leaves in a huff and eventually ends up hooking up with the very lonely Ralph. They’ve now done the old entanglement swap.

This leaves us with one dead photon, Larry, and one abandoned photon, Sally. They come from two different disengaged pairs and couldn’t be more unrelated. But, thanks to the screwy world of quantum mechanics Larry has somehow returned from the dead and is suddenly now entangled with Sally. They are an entangled pair. Sally wasn’t even alive when Larry died! But now she’s stuck in a paired entanglement with a stupid zombie. Now that's frightening. I’m sure Einstein is spinning in his grave.

If my telling of this bizarre quantum tale hasn’t scrambled your brains, or made the hairs on the back of your neck stand up, you can try to learn more at the below links.

SOURCES AND LINKS
New Scientist story
Scientific American story
Niels Bohr – the genius responsible for this stuff
Quantum entanglement
Uncertainty principal
Schrodinger’s Cat A cat's both dead and alive until you look inside the box.

Jul
18
2012

Sprayable Battery: Move over spray-tan, there's a new aerosol in town.
Sprayable Battery: Move over spray-tan, there's a new aerosol in town.Courtesy Alex Walker
Researchers from Rice University have rethought the battery. Typically, batteries are made up of 5 layers: a positive and negative electrode, each with a metal current collector, and a polymer separator. These layers are manufactured in sheets and then rolled into cylinders. Rice researchers realized that each of these layers were available, or could be created, in sprayable form. They used lithium titanium oxide and lithium cobalt oxide for the anode and cathode, existing metallic paints and carbon nanotube mixtures for the current collectors, and a chemical hodge-podge with a very lengthy name for the separator layer. The result is an ultra thin (a fraction of a millimeter thick) lithium ion battery.
In their first experiment, researchers sprayed each consecutive layer onto nine bathroom tiles, topped with a solar cell. The resulting batteries were able to power 40 LEDs for six hours.
In its current state, this method is too toxic to be used outside a controlled environment, but with a little tweaking, a safe alternative will be found. At that point, any surface could be a battery!

Jun
28
2012

Sensing Strain: This new system will allow you to detect strain anywhere, in any direction, and at any time.
Sensing Strain: This new system will allow you to detect strain anywhere, in any direction, and at any time.Courtesy Bruce Weisman
Scientists at Rice University developed a new type of paint, infused with carbon nanotubes, that can detect strain in bridges, buildings, and airplanes before the signs of deformation become visible to the naked eye.

This is how it works: The paint is applied to the desired structure and allowed to dry. A laser beam is then focused on the structure, which excites the carbon nanotubes, and in turn, causes them to fluoresce in a way that indicates strain. Finally, a handheld infrared spectrometer is used to measure this fluorescence.

The advantage of strain paint over conventional strain gauges is that the gauge (the paint, in this case) and the read-out device don't have to be physically connected. Also, strain paint allows you to measure strain anywhere on the structure, and along any direction. This product is not yet on the market, but it will benefit all of us, as I'm sure we all find the structural integrity of our planes, bridges, and buildings to be pretty important.

May
17
2012

Electricity from Viruses: Berkeley Lab scientists generate electricity using viruses.
Electricity from Viruses: Berkeley Lab scientists generate electricity using viruses.Courtesy Courtesy kso
Scientists from the Berkeley Lab have developed a way to generate electricity from viruses! Their method is based on the piezoelectric properties of the virus, M13 bacteriophage. Piezoelectricity is the charge that accumulates in certain solids when a mechanical stress is applied to them (squeezing, pressing, pushing, tapping, etc.) The scientists realized that the M13 virus would be a great candidate for their research because it replicates extremely rapidly (no supply problems here), it’s harmless to humans (always a good thing), and it assembles itself into well-organized films (think chopsticks in a box). It was these films that they layered and sandwiched between gold-plated electrodes to create their nearly paper-thin generator. When this postage stamp-sized generator was tapped, it created enough electricity to flash a “1” on a liquid crystal screen.

The potential here is that someday we could put these super-thin generators in any number of places, and harness electricity by doing normal, everyday tasks like walking or closing doors. I propose putting them in the shoes of marathon runners and then have cell phone charging stations along the route. Nothing is more maddening than waiting all day in the rain to get an action shot of your runner, only to find that your battery has since died by the time your slow-poke reaches the finish line. There’s always next year.

Mar
31
2012

Smear campaign: climate scientist relates his own experience from anti-science attack
Smear campaign: climate scientist relates his own experience from anti-science attackCourtesy CECAR - Climate and Ecosystems Change Adaptation R (adapted by Mark Ryan)
Several months back there was a lot of hoopla revolving around the so-called "Climategate" scandal. Climate scientists' emails were hacked, posted online and taken out of context as they were disseminated around the internet and through the news channels. Some researchers were charged with manipulating climate data to bolster their own point of view, and indignant investigations were launched against them. As the story fermented in the media, the blogosphere, and political circles, it grew into an over-inflated bag of hot-air. But, eventually, the truth prevailed, and those accused were exonerated by the facts. Michael Mann, a climate change researcher at Pennsylvania State University, was one of key figures in the "scandal", and has written (both here and in a new book) about his experience dealing with the kind of smear campaign that was hurled his way. He terms it the "scientization" of politics. It's involves some of same anti-science tactics used by the tobacco industry and creationists: mainly to cast doubt on the facts, and fabricate controversy where there is none.

Michael Mann at CNN.com

Jan
05
2012

The future is now for some lucky Americans. The rest of us will have to wait and hope that someday soon our recycling trucks might also run on “trash gas.”

“Trash gas” is natural gas that is harvested from landfills where it is produced by the decomposition (breaking down) of organic waste. One future-thinking company, Waste Management Inc, now has over 1,000 trucks fueled by methane (a natural gas) that they collect from one of their very own California landfills.
I'd Rather be a Recycling Truck: A lucky 1000 Waste Management recycling trucks run on cleaner-burning natural gas (compared to conventional diesel).  Are more in the making?
I'd Rather be a Recycling Truck: A lucky 1000 Waste Management recycling trucks run on cleaner-burning natural gas (compared to conventional diesel). Are more in the making?Courtesy Tom Raftery

Natural gas can be used in vehicles in either a compressed or liquefied state. Waste Management’s trash gas trucks are about 50/50 compressed natural gas (CNG) and liquefied natural gas (LNG). You should check out those links, but to give you the gist of the idea here, imagine a balloon filled with natural gas. CGN is like squeezing that balloon. LGN is like cooling that balloon until the molecules inside condense into liquid like steam on a bathroom wall.

Why is this a BIG idea? CNG and LNG emit less carbon and nitrogen oxides into the atmosphere than diesel (the conventional fuel used by most large trucks). As you’ve probably heard, carbon dioxide is among the greenhouse gases contributing to global climate change. Meanwhile, nitrogen oxides contribute to smog, which is bad for your health besides being unsightly. Less is definitely more when it comes to carbon and nitrogen oxides.

As for more, Waste Management’s single currently operating LGN-generating landfill creates 13,000 gallons of LGN each day, which is enough to fuel 1,000 trucks. According to the primary source of this blog post, Waste Management has another landfill-turned-fuel station up for approval. With an additional 299 landfills and about 21,000 trucks, it might not be that long before a Waste Management “trash gas” truck comes rolling along your street.

Dec
16
2011

Ten abandoned mining pits in Minnesota's Iron Range could have new life as pumped-storage hydroelectricity plants, according to a University of Minnesota,* Great River Energy, and Minnesota Power study.

[Hey, now: did you click on the hyperlink above? I don't put hyperlinks in posts for my own amusement, you know. They're for your viewing pleasure and learning enjoyment! Seriously though, click on them for great explanations, photos, diagrams, graphs, and more. You won't be disappointed.]

Match made in Minnesota: Wind and water "play nice" in pumped-storage hydroelectric technology.
Match made in Minnesota: Wind and water "play nice" in pumped-storage hydroelectric technology.Courtesy Steve Fareham

Pumped-storage hydroelectric technology sounds like something from a science fiction movie, but it's really just a neat combination of water and wind energy technology. What makes pumped-storage hydroelectric projects sexy is that they make it possible to store excess energy generated by wind turbines on windy days. This stored energy can then be used during the inevitable calm days -- addressing one of the biggest issues for today's wind energy industry!

How does it work?

It's basic physics, my friends: building potential energy and releasing kinetic energy. Specifically, excess energy generated by wind turbines "is used to pump water from a low-lying reservoir to a higher elevation pool" within the mine pit. This builds the potential energy of the water. Then, when that energy is demanded, "water from the upper pool is released generating hydroelectricity and refilling the lower pool." This releases kinetic energy, which can be turned into electricity.

How effective is it?

Researchers estimated that a pumped-storage hydroelectric facility built in Virginia, MN could output the same electricity as a "modest-sized" generator burning natural gas. However, at a cost of $120 million, the pumped-hydro facility would be more expensive than a comparable natural gas generator.

There are 40 U.S. locations currently employing pumped-storage hydroelectricity technology, but there are no definite plans for any such projects in Minnesota -- yet.

Read the Star Tribune's coverage of this story here.

*Including scientists from UMD's Natural Resources Research Institute, St. Anthony Falls Laboratory, and Humphrey School of Public Affairs; and funded largely by the Initiative for Renewable Energy and the Environment.