Stories tagged Energy Transformations

Dec
20
2009

Old refrigerators guzzle energy: Newer refrigerators use 75% less energy
Old refrigerators guzzle energy: Newer refrigerators use 75% less energyCourtesy Rich Anderson

More efficient refrigerators have a huge impact

Refrigerators today are bigger than in the 70s but use 75% less energy. This happened because of stricter energy efficiency standards. Efficiency standards can save more energy than current wind, solar, and geothermal energy sources combined!

United Nations summit on climate change

This week at the United Nations' summit on climate change, U.S. Department of Energy (DoE) Secretary, Steven Chu, unveiled a $350-million investment plan to bring to the developing world everything from efficient refrigerators to solar lanterns.

Climate REDI

Climate Renewables and Efficiency Deployment Initiative (Climate REDI) is a $350-million investment by major economies, including $85 million from the U.S., to bring everything from efficient refrigerators to solar lanterns to the developing world.

"The energy savings from refrigerators is greater than all U.S. renewable energy generation—all the wind, solar thermal and solar photovoltaics—just the refrigerators," Chu said in a speech announcing the initiative, noting the refrigerators also cost less. "Energy efficiency is truly a case where you can have your cake and eat it too. [But] it was driven by standards; it didn't happen on its own."

Learn more about the UN energy-efficiency initiative

Source: Scientific American
U.S. Unveils a $350-Million Energy-Efficiency Initiative at Copenhagen

Nov
25
2009

A concerned citizen preforms a simplified self test: Results are positive.
A concerned citizen preforms a simplified self test: Results are positive.Courtesy kevjblack
The Large Hadron Collider, the LHC, the World Destroyer, the Hula Hoop of God, the RC Matchbox Racetrack of Zeus, the Contraceptive Ring of Gaia herself… has been turned on.

You remember how concerned you were about this, right? You were worried that, based on what that friend said and what you read on that webpage, the activation of the LHC could be the end of the world, if not the universe.

Well, I know you’re nervous about what you might find, but I think there’s no avoiding it—it’s time for our regular self-check. I’ll walk you through it.

Stand up, and place your arms at your sides, palms in. Move your hands back and towards each other, keeping the palms facing in. When your hands have nearly met behind you, pull them forward and make a grabbing motion with your hands.

Did your hands go through thin air, or did they encounter something soft yet substantial? If the latter is true, we can all breath a sigh of relief—the LHC didn’t destroy life as we know it, and your butt is safe. For now.

The collider was actually turned on on Friday, although the first collisions from its accelerating beams of particles weren’t expected until early December. Much to the scientists’ surprise, collisions were detected as early as Monday. Check again if you need to, Buzzketeers.

If you’re looking for something to worry about, however, you might consider the following: the machine isn’t anywhere near full power yet. The protons involved in Monday’s collisions had been accelerated to the point where they had 450 billion electron volts. In the next few weeks, the LHC team will accelerate the particles up to 1.2 trillion electron volts, and, eventually, the facility should be accelerating protons to 7 trillion electron volts. When you’ve got protons heading each way, that means collisions will involve 14 trillion electron volts.

Yowza, right? I mean, the next most powerful particle accelerator, the Tevatron in Illinois, can only inject 900 billion electron volts into its accelerating particles—the LHC can do more than 15 times that!

But what does that mean? That sounds like a frightening amount of energy, so why doesn’t the Earth rumble and moan like a house in a storm whenever a large particle accelerator is turned on? It is a lot of energy, especially when you’re concentrating it into individual protons, which are, of course, very very small. But an electron volt is a very small unit of energy; it is defined as being “equal to the amount of kinetic energy gained by a single unbound electron when it accelerates through an electrostatic potential difference of one volt.” One trillion (that’s a million millions) electron volts—one fourteenth of the total energy of the LHC’s biggest possible collisions—is approximately equal to “the amount of energy of the motion of a flying mosquito.” That might be a deceptively small analogy—I’m sure it takes much much much more than a few bugs on treadmills to get the LHC powered up, and, again, that’s a lot of energy to be concentrated in a single subatomic particle racing at nearly the speed of light—but it’s an interesting comparison.

Strangelets and micro black wholes: 0; continued existence: 1.

Nov
08
2009

.

LaserMotive wins $900,000 power beaming space elevator prize

An 11-pound contraption built by LaserMotive of Kent, Wash., successfully climbed up a kilometer high cable suspended from a helicopter in 4 minutes 2 seconds. This qualified them for $900,000. If they had done it in 3 minutes the prize would have been 1.1 million dollars. In four years of the power-beaming competition, LaserMotive is the only competitor to qualify for a cash prize.

Contests are getting the job done

Million dollar prizes are motivating research and development in areas that probably wouldn’t be done otherwise, said Andrew Petro, manager of NASA’s Centennial Challenges program. Many of these challenges have just finished.

Learn more about other Centennial challenges

Source
Winner in Contest Involving Space Elevator New York Times

Nov
08
2009

Cleaner coal: The Mountaineer Power Plant is the first in the world to capture some of the carbon dioxide it emits from burning 3.5 million tons of coal yearly and sequester it two and a half kilometers underground.
Cleaner coal: The Mountaineer Power Plant is the first in the world to capture some of the carbon dioxide it emits from burning 3.5 million tons of coal yearly and sequester it two and a half kilometers underground.Courtesy rmcgervey

Carbon dioxide removed from power plant exhaust and pumped underground

In addition to other environmental technology add-ons that strip out the fly ash, sulfur dioxide and nitrogen oxides, the Mountaineer Power Plant in West Virginia now also uses a carbon-capture unit built by Alstom. Dubbed the "chilled ammonia" process, baker's ammonia is used to strip carbon dioxide from the cooled flue gas and then, by reheating the resulting ammonium bicarbonate, captures that carbon dioxide, compresses it into a liquid, and

pumps it 2,375 meters straight down into the Rose Run sandstone, a 35-meter-thick layer with a nine-meter-thick band of porous rock suitable for storage. (or...) into Copper Ridge dolomite, which has much thinner strata for possible storage, more than 2,450 meters down. Thick bands of shale and limestone that lie on top ensure that the carbon dioxide does not escape back to the surface. Scientific American

Only 1.5% but first in the world

Only about 1.5 percent of the carbon dioxide billowing from its stack is being captured now. Scaling up the process to capture 20% of the CO2 will cost at least $700 million. The removal of carbon dioxide will add abouts 4 cents more to the current cost of Mountaineer electricity (roughly 5 cents per kWh). This chilled-ammonia technology should be available commercially by 2015.

Learn more:
Slide show of Mountaineer Power carbon sequestering technology.
First Look at Carbon Capture and Storage in a West Virginia Coal-Fired Power Plant Scientific American

Nov
02
2009

$10 million dollars

By offering a $10 million dollar prize, the Progressive Insurance Automotive X PRIZE seeks to enable development and stimulate demand for clean, fuel efficient vehicles.
In the Design Judging process, automotive experts evaluated 97 registered entries for:

  • High fuel economy (100 MPGe) with low emissions (200 g/mi CO2e wells-to-wheels greenhouse gas emissions and low tailpipe emissions)
  • Production-capable and designed to reach the market in volumes of at least 10,000 units per year
  • Safe and affordable
  • Minimum capacities, performance, and features

53 vehicles are moving forward in the competition with 28 represented in the Mainstream Class and 25 represented in the Alternative Class.

  • Mainstream class = Vehicles that meet current consumer expectations for size and capability
  • Alternative class = Outlet for innovative ideas that push forward today's concept of "what a car is"

The big race begins this spring (2010)

43 teams, representing 18 states, 10 countries and 6 fuel types, now advance to the most exciting phase of the competition, performance and safety testing. Vehicles will be tested for efficiency, performance and durability under real-world conditions. Vehicles will race the clock through cities, up hills, and will need both speed and distance capability.

Half of the $10M purse will be awarded to the Mainstream Class winner. The remaining $5M will be split between two winners in the Alternative Class - one vehicle with side-by-side seating, and one vehicle with tandem seating. Performance testing will begin in spring 2010 and winners will be announced in September 2010.

Learn more about the Automotive X Prize

Progressive Automotive X Prize Press kit (PDF)
ProgressiveAutoPrize.org
Links to the Qualified Teams

Oct
30
2009

For me, the greatest mystery in the universe is Lindsay Price, and how she continues to find work.: Not that great a mystery, I guess…
For me, the greatest mystery in the universe is Lindsay Price, and how she continues to find work.: Not that great a mystery, I guess…Courtesy catechism

And, let’s face it, who hasn’t had the urge now and then? At the “Quantum to Cosmos” physics conference in Waterloo, Canada, seven physicists were asked, "What keeps you awake at night?" (Apparently, they meant “what issue in science” as opposed to love, money, or lack thereof.) The panel came up with some pretty heavy questions:

Why are the fundamental laws of nature the way that they are? There doesn’t seem to be any reason why they couldn’t be some other way. Are there, perhaps, other universes with other rules?

How does the Observer Effect work? This is a little deep for me, but apparently at the sub-atomic level, simply observing a particle over here can effect another particle thousands of miles away. How does nature do that?

What is the nature of matter, anyway? Especially the “dark matter” which is theorized to exist in outer space, messing up all our gravity calculations.

On a related note, will string theory ever be proven? String theory is the latest theory for how matter and energy interact at the sub-sub-sub-atomic level. And while it is very elegant and seems right on paper, no one has any idea how to conduct an experiment to prove or disprove it.

How do complex systems arise out of simple, basic particles and forces? You know, complex systems. Like life, the universe, and everything.

How did the universe begin, anyway? Physics can only take us back to a few fractions of a second after the Big Bang, a moment at which the universe was very small, very hot, and very dense. Before that, the laws of physics break down. No one knows how to describe the Bang itself, or how / why it happened.

Which brings us to, what are the limits of science? Science is based on observation and experiment. But, at some point, you run into ideas that can’t be tested. In theory, it’s entirely possible that there are other universes. But we’re stuck in this one—how would we ever know?

If anyone has answers to any of these questions, please send them to Canada ASAP. It sounds like there’s a bunch of scientists up there who could use a good night’s sleep.

Oct
24
2009

.

Buses can recharge at every stop

Como Park will have 3 or 4 circulating shuttle buses next year to help solve the traffic and parking problem at the Como Park Zoo and Conservatory. They will allow free and easy parking by the State Fair grounds and within 7 minutes, will drop you off at the front door.

Como Shuttles should use ultracapacitors

Ultracapacitor buses have low maintenance cost, low operation cost, zero tailpipe emission, and can reach a zero carbon footprint if powered by renewable energy sources.
The estimated savings in energy costs over the 12 year life of the bus (at current electric and oil prices) is $200,000.

Why ultracapacitors are perfect for short bus loops

Ultracapacitors will only power a bus for 5-10 blocks, then need about 3 minutes to recharge. Only two recharge stations would be needed, one at the parking lot and one a the conservatory drop off. The bus recharges while passengers load and unload. Capacitors do not wear out like batteries. A capacitor bus is 40 per cent cheaper to build than a battery powered bus. Because the buses can use regenerative braking, they use 40 percent less electricity than an electric trolley using over head wires.

Source: Next Stop: Ultracapacitor Buses;Technology Review
Sinautec Automobile Technologies, L.L.C.

Oct
12
2009

ICON Univ of MN Solar Decathlon enty: crane lowers a section of roof onto the University of Minnesota's Icon House, which arrived on the Mall Oct. 2. The house arrived several days late because of transport difficulties.
ICON Univ of MN Solar Decathlon enty: crane lowers a section of roof onto the University of Minnesota's Icon House, which arrived on the Mall Oct. 2. The house arrived several days late because of transport difficulties.Courtesy Richard King/U.S. Department of Energy

20 Solar houses compete in fourth Solar Decathlon

I hope to one day live in a house that produces more energy than it uses. A competition between 20 such houses is going on right now on the Mall in Washington DC. The Solar Decathlon joins 20 college and university teams in a competition to design, build, and operate the most attractive and energy-efficient solar-powered house. Points awarded in ten categories determine the overall winner. As of today (Mon) we have climbed up to 7th place(click for most recent rankings).

.

Lots of ways to learn about solar housing design

I have been excitedly working my way through information as it comes in. You can follow a umn_solar_house Twitter feed and there is an ICON Facebook fan page. The Solar Decathalon landing page allows you to jump to photos, videos, and team websites(not working? Try the site map). The University of Minnesota's ICON landing page branches off into a blog, a virtual tour, and lots of educational pages about design. The media (WCCO News and Washington Post) and bloggers (myself included) will be all over this. I recommend GetEnergySmartNow.com's cheat sheet and their overview of the UMN ICON house. You can also download a 966KB PDF media kit about the Solar Decathlon.

Sep
27
2009

Carbon nanotubes as energy storage
Carbon nanotubes as energy storageCourtesy ghutchis

Carbon nanotube springs may be better than batteries

What does a mousetrap have in common with a wind-up clock? A spring. A spring can provide energy to run a clock for days. A mouse trap spring can deliver a quick, deadly energy burst. Unlike batteries, energy stored in a spring can last hundreds of years and is usually not diminished by extreme cold or heat.

1000 times the energy density of a steel spring

MIT scientist, Carol Livermore, "did a combination of mathematical analysis and small-scale laboratory testing to determine the potential of carbon nanotubes to be used as springs for energy storage" MITnews.

Lots of basic research and engineering challenges remain

The nanospring concept is sound in theory and may even be patented. Working out the details to provide a working device using carbon-nano-tubes to store and re-deliver energy will require plenty of additional basic research, followed by engineering work.

Sources:

Aug
11
2009

This jump is brought to you by: Joy.
This jump is brought to you by: Joy.Courtesy tbonzzz_6
Get your bells out, everybody, and ring them! The Chevy Volt is here! (In a year.)

GM released new details today about its new gas and electric hybrid car, the Chevy Volt. Using a plug-in battery (as opposed to current, unmodified hybrid cars, which recharge only via the gas engine), GM claims that the Volt should be able to achieve approximately 320 miles to the gallon during city driving. Estimates haven’t been completed for combined city and highway driving, by officials are confident that fuel economy will remain in the triple digits.

The car should have a range of about 40 miles, using its battery alone, at which point the gas engine would kick in. Nearly 80% of Americans, however, commute less than 40 miles each day, so most of the expended energy could come from the electrical grid (the car will plug into a standard outlet), instead of from gasoline.

GM’s chief executive calls the Volt a “game changer.”

Finally, a game-changing American car. Not like those sissy Prius drivers, making smug environmental statements by purchasing impractically expensive vehicles. Sure, the Volt will be entering the game about 9 years late, but it does so with the confidence that every environmentally conscious working-class American with $40,000 to drop on a sweet new car will… wait, what?

What about the rest of GM’s 2010 lineup? They’re cutting more than half of their 30+ mpg cars? But a few Volts on the road should bring that fleet average up, right?

And GM is pushing for environmental responsibility in other areas, at least, right? Oh, they’re pulling out of a partnership that collects toxic mercury from their old scrapped cars?

Well, it was a nice thought. And it’s comforting to hear someone say something like “game changer” now and again.

Update:
Weeellllll... it looks like the volt may be kind of an unremarkable car after all. Despite their claims last year that it would get something like 230 miles to the gallon, auto trade magazines are test driving it now, and saying it actually gets mileage in the 30 - 40 mpg range. That's less than a Prius. But don't worry, it's still super expensive. Huh. I mean, I couldn't design a "game-changing" car, but, then again, I never said I would. It turns out, too, that even though GM insisted that it wasn't really a hybrid car, and that the gasoline powered engine would only drive a generator for the battery... that's all not true. The gas engine does charge the battery, but it also will drive the wheels. Prove me wrong, Chevy (or commenters), but is this actually a crappy idea, and not a significant step towards changing our energy use?