Stories tagged Interdependence of Life


We've written about freaky frogs on the Buzz Blog before, but some recent news may shed new light on our abnormal amphibians. Until recently, researchers thought that atrazine, an agricultural pesticide, was the sole cause of sexual deformities in frogs. Unfortunately, it's not so simple.
UT OH: What lurks in me waters?
UT OH: What lurks in me waters?Courtesy Mike Ostrowski

An ecologist at Yale University, David Skelly, sought to test assumptions about atrazine by studying the frequencies of frog deformity in different land types--agricultural, suburban, urban, and forested. Skelly expected to find the highest rates of deformities in agricultural areas, which would be consistent with atrazine being the main cause. Curiously, he found the highest rates of deformity in urban and suburban areas--places we wouldn't expect to find much atrazine. So what's going on?

It turns out that what makes atrazine so dangerous is that it mimics estrogen and binds to estrogen receptors in frog cells. Because estrogen impacts sexual development and function, so too does atrazine. But atrazine isn't the only estrogen-mimicking compound out there--there's a whole class of chemicals that mimic estrogens, including those found in birth control pills and plastics (BPA). And these chemicals are found in droves in cities and surburban areas--they're flushed into the sewage, but aren't filtered out during water treatment.
Birth control pills: Estradiol, a synthetic estrogen, helps prevent pregnancy in women. But much of it is excreted in urine and eventually makes its way into various water sources.
Birth control pills: Estradiol, a synthetic estrogen, helps prevent pregnancy in women. But much of it is excreted in urine and eventually makes its way into various water sources.Courtesy Ceridwen

So why do we care? Besides the fact that frogs are just awesome little creatures and important parts of their food webs, they have something in common with humans--estrogen receptors. The same chemicals that impact frogs can impact us. So how do we humans keep our sexual development and functioning intact?
BPA-free: This Sigg bottle is made from enameled aluminum, and it's an example of a BPA-free bottle.
BPA-free: This Sigg bottle is made from enameled aluminum, and it's an example of a BPA-free bottle.Courtesy Bucklesman

Skelly had a great idea to filter this stuff out of the water at the treatment plant, so that it won't get into our bodies from drinking water. He also suggested that regulatory changes would help so that when new chemicals are developed, they're scrutinized for unintended side effects. And of course, we can make choices that reduce our exposure, such as by buying BPA-free plastics, or using stainless steel and glass containers. And of course, increased awareness is always a good idea.

Do you take extra steps to avoid things like BPA? What are they?


If you're a total Buzz nerd like JGordon, you may have noticed a number of posts with the tag "Future Earth" over the last couple of years. They started when the folks here at the Science Museum of Minnesota began researching a new permanent exhibit called Future Earth, opening Fall 2011 at SMM. This exhibit will ask, "How do we survive and thrive on a human-dominated planet?"

EarthBuzz: This new branch of the Buzz focuses on Future Earth topics.
EarthBuzz: This new branch of the Buzz focuses on Future Earth topics.Courtesy SMM

This is a different question than we're used to asking, but it's a vital one. Understanding the answer means studying more than just global warming, rising sea levels, and population growth--we also have to think about energy production, agriculture, retreating glaciers, transportation, hunger, poverty, development, and the list goes on. It turns out that because all of these issues are interrelated, we can't study or address any one of them in total isolation.

This new way of understanding is what inspired the Future Earth exhibit. Future Earth will look at environmental issues with a fresh perspective, explore the ways we study and understand our impacts on the environment, and shed light on projects that offer innovative solutions to complex problems, such as this one we hope to implement at Science Museum of Minnesota. The goal is to foster understanding, hope, and action.

Future Earth is part of a larger effort taking place at SMM, the University of Minnesota's Institute on the Environment, and a team of other institutions called the Future Earth Initiative. Funded by the National Science Foundation, FEI aims to raise awareness and offer workable solutions for life in a human-dominated environment. Given adequate time and resources, these solutions could help reduce our negative impacts on the environment while providing us all with the energy we need to live. Think of it as saving two birds with one…thing that you save birds with…


Fried insect pupae: You have to admit, they look a little bit delicious, right?
Fried insect pupae: You have to admit, they look a little bit delicious, right?Courtesy Steven G. Johnson
If you're as big a fan of Science Buzz as I am, you might remember us saying that eating bugs can be a bad idea.

(I doubt you are as big Science Buzz fans as I am, though. Do you have a large, Party of Five-style poster of Liza, bryan kennedy, Artifactor, mdr, Thor, and Gene hanging in your room? Didn't think so.)

Anyway, despite what we might have said, it turns out that eating bugs may in fact be a good idea. But it's a good idea that's never gonna happen. (When I say "never," I mean "not in my lifetime, so as far as I'm concerned, 'never.'")

See, there are lots of folks who eat bugs (it's called entomophagy). And it's not all Fear Factor-style disgustingness—the insects are often cooked and flavored, and, you know, I'm sure they're fine. Like Corn Nuts.

But there are a lots more people who get their protein from eating larger animals, like cows and pigs and chickens and turkeys and stuff. And for a long time some people ate cows and pigs, and some people ate insects, and the world spun along just fine.

Then, not too long ago, people started to realize something: raising enough cows and pigs and things to feed billions of people has a tremendous negative impact on the environment. You have to feed each animal many times its weight in plants before it grows to full size, and all the while its pooping, peeing, and farting. And before you start complaining about how you're too young to read "pooping, peeing, and farting," let me say two things. 1) The alternative was to write "defecating, urinating, and flatulating," and you are too young to read that; and 2) animal poop, pee, and farts have a huge environmental impact.

When animal waste leaks into water sources, it can make them unhealthy to drink, and toxic to live in (if you're the sort of organism that lives in the water. And the various gases (like methane, nitrous oxide, and carbon dioxide) emitted by animals and their waste are a major source of global warming.

So there. It turns out that those of us who eat meat are straining the environment quite a bit.

But what about all those edible bugs? How do they fit in?

Well, a group of scientists from the Netherlands just published a report on that very thing. They compared the emissions of common meat animals to those of a variety of insects, and found that the world would probably be better off if we raised and ate bugs instead of cows and pigs.

See, insects are able to turn the food they eat into protein much more efficiently than cows and pigs, because insects' metabolisms don't constantly burn fuel to maintain a regular body temperature (like the metabolisms of cows, pigs and people do). In the end, for the amount of mass they build, insects produce less greenhouse gases than pigs, and way less than cows. The insects' production of ammonia (a source of water pollution) was also much less than cows and pigs. The long and the short of the research is that if we were to have farms raising delicious mealworms, house crickets, and locusts, we could reduce our greenhouse gas emissions significantly.

But I don't have high hopes for any of that; it's hard to imagine seeing insect-based food items on the shelves any time soon. Here's hoping though, right?


If it had hands: it would be holding your life in them. Just saying.
If it had hands: it would be holding your life in them. Just saying.Courtesy splorp
Gather ‘round, Buzzketeers, so that I might tell you all a story.

“What story,” you ask?

Is it the one about the little blond girl who is killed by bears for breaking and entering? No, not that story.

Is it the one about the boy who killed an acromegalic man by cutting down the tree that held his fort? No, it’s not that story either.

Could it be the story about the little Blood member who couldn’t tell the difference between a wolf and her own grandmother, and was subsequently devoured by that very wolf? Oh, I wish it were, but it’s not that story.

No, the story I have for you all is even more enduring and horrifying than all of those. It is the story of biodiversity, and how it will freaking destroy you if you mess with it.

Sure, snort dismissively if you must, but you’ll soon be singing a different tune. A sad tune about how everything you ever knew and loved has been taken away from you.

“But how can a concept—and a boring concept like “biodiversity”—hurt me?” Ah, see, but what you don’t know can hurt you. You’re like the little blond girl, screwing around in a house that belongs to bears. She might not have known that it was a bear house (although it’s hard to imagine that she could have missed all the signs), and yet she was destroyed. So listen up.

You see, all biodiversity is is the degree of variation of living things in an ecosystem. Lots of biodiversity in an ecosystem, lots of different things living there. Little biodiversity in an ecosystem, few species living there. And biodiversity includes all forms of life, from your vampire bats and hagfish, to your streptococcus and your slime molds.

At the moment, biodiversity on the planet is on its way down. Lots of the things we do these days make life harder for other species, until there are very few or none of them left. And, sure, no one wants to see a panda get hit by a train, or watch an eagle being run over by road grading equipment, but who cares about the smaller, grosser stuff, like algae or germy things? We could probably do with a few less of those, right? Right?

Wrong, Goldilocks! An attitude like that is bound to get you turned into bear meat.

And here’s where my story begins (again)…

Once upon a time, long, long ago, everything died.

Well, not everything-everything, but pretty well near everything. It was called “the Permian extinction” (we’ve talked about it on Buzz before: here), and more than 90% of all marine (water) species and 70% of all terrestrial (land) species on the planet went extinct. It was way worse than the extinction that would eventually kill off the dinosaurs, and it took the planet a lot longer to recover from the Permian extinction.

What caused the Permian extinction? Oh, you know, a lot of stuff. Probably a lot of stuff. See, while we can more or less say that the dinosaurs were killed off by a giant space rock, it’s harder to say what did in the creatures of the Permian period. After all, the Permian ended almost two hundred million years before the extinction of the dinosaurs. But people have plenty of good guesses: maybe a few smaller space rocks hit the planet, maybe massive volcanic eruptions in what would become Asia kicked dust and poisonous gas into the atmosphere, maybe the oceans suddenly released massive amounts of methane… probably it was a combination of these things and more, and the extinction probably happened in waves before the planet became a good place to live again.

But here’s another straw for that dead camel’s back: the algae died. Not all of it, but lots and lots of the algae died. But why, and why did it matter? After all, it’s just algae.

Scientists aren’t sure exactly what cause so much alga—microscopic plant-like ocean life that turns sunlight into food—to die, but it looks like a sudden rise in the levels of sulfur in the oceans might have had something to do with it. It could be that there was an explosion in the population of sulfur using, hydrogen-sulfide releasing bacteria in the oceans, which would poison the algae.

In any case, there was a large die off of the sort of species we don’t give a lot of thought to. And what happened? The bear meat hit the fan!

Because they turn so much sunlight into so much food, algae act as the basis for most marine food chains. When the algae were gone, photosynthetic bacteria took its place to some extent, but the bacteria were a poor substitute, and the oceans were left with much, much less food. Also, algae produce a significant amount of the planet’s oxygen, and their absence would have created atmospheric changes as well.

This alone might have been enough to cause extinctions, and combined with the other natural calamities of the end of the Permian, it’s no wonder there was such a massive extinction event.

What a good story, eh? Now, if someone asks you what’s so great about biodiversity among the slimier and more boring species, you can just repeat this post, word for word. Or you can repeat this, the short version, word for word: “Because, Mom, if the algae die, we’ll be left choking and crying among the ruins of humanity for the rest of our short lives. And happy birthday.”


The University of Minnesota's Institute on the Environment has made some great movies examining what they call "big questions."

Big question: Feast or famine?
IonE's first Big Question asks: How do we feed a growing world without destroying the planet?

Big question: Is Earth past the tipping point?
Have we pushed our planet past the tipping point? That's a critical issue the IonE explores in our second Big Question video.

Big question: What is nature worth?
Plants, animals, even entire ecosystems are disappearing. So what? "What is Nature Worth" offers a three-minute look at what we’re REALLY losing – and what we can do about it.

Interesting problems, right? If you're intrigued, and want to know more about the folks posing the questions and trying to find the solutions, jump over to Future Earth.


Aiding and abetting science: Prison inmates have been enlisted to help forest ecologist Nalini Nadkarni in her research.
Aiding and abetting science: Prison inmates have been enlisted to help forest ecologist Nalini Nadkarni in her research.Courtesy Nalini Nadkarni
Since 2004, scientist Nalini Nadkarni has enlisted prisoners to aid in her scientific research.

Don’t worry, it’s not cruel and usual punishment. The inmates aren’t being used as guinea pigs to test new drugs or try out some new method of electroshock therapy. Instead, the incarcerated offenders are part of Nadkarni’s research team. Nadkarni holds a PhD in Forest Ecology and is on the faculty at Evergreen State College in Olympia, Washington. The National Science Foundation (NSF) has funded some of her inmate-aided research.

For one of Dr. Nadkarni'sDr. Nalini Nadkarni
Dr. Nalini NadkarniCourtesy Nalini Nadkarni
research projects, offenders at the Stafford Creek Corrections Center in Aberdeen, Washington, helped plant seeds of rare prairie plants then recorded data during the plants growth stages. The prisoners actually enjoyed helping out with the research. Not only did it give them a sense of doing something worthwhile, it connects them to something that’s sorely lacking in the old Graybar Hotel: nature.

For another project called Moss-in-Prisons (no Thor, your hero Randy has been picked up by the Tennessee Titans), Nadkarni recruited inmates at the Cedar Creek Corrections Center in Littlerock, Washington, to help discover improved ways of cultivating slow-growing mosses.

"I need help from people who have long periods of time available to observe and measure the growing mosses; access to extensive space to lay out flats of plants; and fresh minds to put forward innovative solutions," Nadkarni said.

If successful, the research could help replace ecologically important mosses that have been stripped from old-growth forests in the Pacific Northwest, a sometimes illegal tactic that seems to be a favorite among some horticulturists.

In many cases, helping with the research isn’t just a way for inmates to pass time behind the brick walls and barbed wire of their confinement. It’s also a way to inspire them. One former inmate, who had worked with Nadkarni, enrolled in a Ph.D. program in microbiology after his release from Cedar Creek, and went on to give a presentation of the research he had done there at the annual meeting of the Ecological Society of America.

Apparently, Dr. Nadkarni is on to something, and its importance is not lost on those still behind bars.

"It teaches me something," said one prisoner involved with Nadkarni’s prairie plant study. "It makes me work with people and it's just a new skill that I've learned."

Both science and prisoners benefit from this natural symbiosis taking place in such an unnatural setting. And other prisons have expressed interest in getting their inmates involved in Nadkarni’s research programs,

"Everyone can be a scientist,” Nadkarni says. “Everyone can relate to nature, everyone can contribute to the scientific enterprise, even those who are shut away from nature.”

NSF story and video
NSF press release


Disease Detectives
Disease DetectivesCourtesy Disease Detectives
Earlier this year I got the chance to work as the crew of high school staff in the Kitty Andersen Youth Science Center ( at the museum to create a series of web-based videos about infectious diseases for the Disease Detectives exhibit. We worked from January through August learning video production skills, learning about different infectious disease topics, talking to experts and folks on the museum floor. We're just getting the videos online now, and all of our videos will be on the exhibit website soon ( but I wanted to share them here as well.

For this video, titled "Got Beef? The Story Behind Antibiotics and Livestock" the crew to a slaughter house on in South St. Paul, the Minnesota Department of Health, U of M St. Paul (at 7AM to see the cows grazing), Mississippi Market Co-op, and did hours of research, prep, and post production.
Got Beef? The Story Behind Antibiotics and Livestock from Disease Detectives on Vimeo.

You can check out the video here.


This goes double for you, kid: Do you know what they have to eat in Slytherin? Shape up, or you'll find out.
This goes double for you, kid: Do you know what they have to eat in Slytherin? Shape up, or you'll find out.Courtesy plainsight
Please, students, have a seat. Dinner will be served momentarily, but first I need your attention for a few words. Thank you.

Well well, my little wizketeers. You have been bad, very bad indeed.

I think you all know what it is I am referring to, but I will say it anyway: owl thievery is through the roof, and I’m inclined to think that many of you are nothing but stinking little owl thieves.

I know that some of you are from muggle families, and have only recently been introduced to the traditions of wizardry, but even you should know that owl stealing is one of the worst crimes of the wizarding world. Worse than sealing a goblin in an empty pumpkin juice cask and burying it in the woods. Do you understand?

Here: extend your right arm. Place your hand on the shoulder of the wizard or witch sitting to your right. Now remove your hand from their shoulder, and thrust your finger into their eye. Either eye will do. And, for those of you sitting at the extreme left of your row, I ask that you poke your own eyeballs as well.

How did you all like that? Well, that was nowhere near as bad as stealing an owl. Do you know who else was an owl thief? Voldemort. Also, Hitler. It was certainly the least of their crimes, but no one would disagree that it was indicative of their characters.

You see, owl populations have been shrinking on the Indian subcontinent. (And, for those of you who haven’t pursued geography outside of our more magic-based curriculum, India is a massive chunk of the Earth, which is the planet we live on.) India is tremendously rich in biodiversity, but its 30 or so species of native owls are disappearing thanks, in part, to the illegal sale of owls as pets.

Oh. Gosh. Where could those owls be going? What a mystery. Wait… By Godrick’s beard… Could they maybe, just maybe, be going to one place in the world you’re most likely to find spoiled children with pet owls, Hogwarts School of Witchcraft and Wizardry?!

It’s not as if you even take care of them. Believe me, I’ve pulled enough dead owls out of the toilet traps in this school to know.

And what’s worse is that you’re encouraging others to buy owls as well. I can—and believe me, I will—personally hunt down and punish each owl-owning student in this school, but there’s little I can do about the legions of muggle children you are inspiring to buy owls. The most I can hope for is that they all catch salmonella from careless pellet handling. But that does the owls little good, and all the while Indian ecosystems are becoming weaker and unbalanced, because top predators are being eliminated. Without creatures like owls to keep them in check, rodent populations will boom. They, in turn, can over-consume the plant life of an ecosystem and outcompete other animals.

But then, what would you all understand of ecology. Most of you can barely handle basic sums. Such is the drawback of the narrow focus of our school.

So I will make it simple for you: if I catch any of you with an owl, you will be transferred to Slytherin House. Have you ever seen Syltherin? Those kids are the worst. I’ve been in the Slytherin common room once, and I got some sort of fungus there. And if you already live in Slytherin, owl possession will earn you room and board in the forest. Does that sound fun? It’s not. The forest is like the Jersey Shore for elves. If you don’t know what I’m talking about, at least remember this: always keep an eye on your drink.

Well. I think you all have got the message now. Remember: I’m only stern with you because I care so much for you. You little poachers.

Now let’s eat!


Water issues are complex and interrelated, so it can be difficult to solve them. But because water is essential to our way of life, we gotta get to work!

Here's an example of how convoluted things can get:

A study at the University of California in Irvine found that freshwater runoff (from precipitation and ice sheet melting) into the oceans has increased significantly--18% more water flowed into the oceans in 2006 compared to 1994. The main problem with this is that the freshwater then becomes saltwater, and we have to wait for it to evaporate and rain onto the ground for it to become drinkable/cookable/agriculturable again. But with global warming, precipitation patterns have changed so that the areas that need water aren't getting as much as they used to.

Speaking of global warming, CO2 in the atmosphere does more than heat things up--it dissolves into the ocean, which makes the water more acidic. This change in pH, though subtle, could become sufficient to kill delicate creatures such as krill in the Southern Ocean within 100 years. Considering that many of the fish we like to eat dine on krill, this could pose a big problem in the future.

But it gets more complicated. The runoff from agricultural fields contains nitogren-based fertilizers, and rivers release tons of it into the ocean each year. The nitrogen fuels an overgrowth of algae, which die when the nitrogen is gone and fall to the seafloor. There, they are consumed by bacteria that thrive and gobble up all the oxygen, creating a "dead zone" where plants and animals cannot live. While human activities add double the natural amount of nitrogen into soils, about 60% of that fertilizer is never used by the plant and ends up in the ocean. Some of it also ends up in the atmosphere, where it becomes N2O--a more powerful greenhouse gas than CO2. This adds to global warming, bringing us back to increased freshwater runoff.

In short, more water is running into the ocean and that water is full of ick that kills stuff and makes more water run into the ocean. Ick.


How much water is is needed to make ___?

Water footprint: Water used to produce items
Water footprint: Water used to produce itemsCourtesy lorigami
This awesome graphic shows how many gallons of water it takes to produce some common foods. Producing a pound of meat can require thousands of gallons of water. So when you pledge to use less water you need to consider how much water was required to make some of the things you use.

What is your "water footprint"?

A good place to start in learning about water consumption is
One page calculated water used per person per year for various nations.

  • United States ----- 2 1/2 million Kgs
  • China --------------- 7/10 million Kgm
  • World average ---- 1 1/4 Kgm

There is a Water Footprint Calculator for anyone wishing to compare their personal water usage with others. Everything is metric, though.

Raise you water usage awareness

TreeHugger has water footprint explained using pounds and gallons.
Browse through some of this information and tell us what you learned in the comments.