Stories tagged climate change

Apr
08
2011

In the public media, the impacts of global warming have been less important than questioning its causes. And at any rate, reports on the impacts have alternately a catastrophic immediacy or an ambiguous, amorphous quality--the latter likely born out of caution due to the former's inaccuracy and tendency to undermine action. But there's room for a third approach--one of reasonability and inquiry.

And in fact, scientists' explorations go beyond the intangible models of earth covered in gradations of 5 colors, which represent average temperature change over the last century. Their work tests changes in the real world with real organisms. This field work generates data that can be used to test and improve the accuracy of the earth systems models we use to predict future change.
Wheat: I do what I want.
Wheat: I do what I want.Courtesy 3268zauber

One such project is literally heating up wheat fields and spraying CO2 over them. The researchers want to find out how global warming and increasing concentrations of CO2 will impact crops. It turns out that plants will react to these changes differently in different latitudes and climes.

For example, plants in warmer climates might grow better earlier in the year only to take a dive once summer temperatures pass a certain range. Plants in cooler climates might thrive with warmer temperatures and increased CO2, whereas tropical plants might suffer from too much heat.

"There is a narrow latitudinal band that could make rising heat beneficial to growers, Kimball concluded. But farther south, especially in Mexico, the implications of the warming mean serious reductions in crop yields."

Climate model: I get better when you validate me.
Climate model: I get better when you validate me.Courtesy Robert A. Rohde

The information gleaned in these plant studies is helping validate and improve existing models of vegetation so that the tools we need to make decisions about climate change are more accurate. One of the researchers in the article implies that we need a lot more of this validation than we do predictions right now. Even so, changes in reporting on climate change's impacts are often due less to increased uncertainty and more to increased information.

So it seems that rather than the impacts of climate change being universally good or bad, they're a little of both in different parts of the world. What can we do to improve communication in the media on this front?

And to take this a step further, given the varying environmental responses to global warming, it is ethical for one country to make decisions about climate change without consulting other countries?

Feb
14
2011

We've probably been debating the virtues of urban areas since humans gathered in the first cities thousands of years ago. But one question we probably haven't explored much is how we can prepare our cities for climate change.

Climate and sea level have changed slowly throughout humanity's history, and we've been able to adapt. Until quite recently, humans either didn't build settlements in risky areas, or the ones they built (say on floodplains or near a sea shore) were temporary and easily moved or abandoned.

Now that we face accelerating and more extreme changes in the next 100 years, we also have some very permanent structures (and infrastructures) in the riskiest of places. Over 100 million people live in areas likely to be underwater by 2100. And even landlubbers face the challenges of more frequent extreme weather events--heavier rainfalls, droughts, etc.

St. Paul, MN: I bet there are thousands of ideas brewing in these buildings every day (especially the one on the lower left side).
St. Paul, MN: I bet there are thousands of ideas brewing in these buildings every day (especially the one on the lower left side).Courtesy John Polo

Luckily, engineers are already beginning to plan for these changes as they retrofit and build new buildings and infrastructure. Often, these engineers are ahead of city building codes and have trouble persuading property owners to invest in addressing threats that lie in the future. But isn't it better safe than sorry? Maybe we could build cities so strong that climate change barely bothers us.

And even luckier perhaps is that cities are hotbeds of innovation and creativity. We could see the efforts of these engineers as just another example of urban virtues. More people mean more ideas and more resources devoted to the cause. And in our rapidly changing world, we need that teamwork more than ever.

Jan
13
2011

Fried insect pupae: You have to admit, they look a little bit delicious, right?
Fried insect pupae: You have to admit, they look a little bit delicious, right?Courtesy Steven G. Johnson
If you're as big a fan of Science Buzz as I am, you might remember us saying that eating bugs can be a bad idea.

(I doubt you are as big Science Buzz fans as I am, though. Do you have a large, Party of Five-style poster of Liza, bryan kennedy, Artifactor, mdr, Thor, and Gene hanging in your room? Didn't think so.)

Anyway, despite what we might have said, it turns out that eating bugs may in fact be a good idea. But it's a good idea that's never gonna happen. (When I say "never," I mean "not in my lifetime, so as far as I'm concerned, 'never.'")

See, there are lots of folks who eat bugs (it's called entomophagy). And it's not all Fear Factor-style disgustingness—the insects are often cooked and flavored, and, you know, I'm sure they're fine. Like Corn Nuts.

But there are a lots more people who get their protein from eating larger animals, like cows and pigs and chickens and turkeys and stuff. And for a long time some people ate cows and pigs, and some people ate insects, and the world spun along just fine.

Then, not too long ago, people started to realize something: raising enough cows and pigs and things to feed billions of people has a tremendous negative impact on the environment. You have to feed each animal many times its weight in plants before it grows to full size, and all the while its pooping, peeing, and farting. And before you start complaining about how you're too young to read "pooping, peeing, and farting," let me say two things. 1) The alternative was to write "defecating, urinating, and flatulating," and you are too young to read that; and 2) animal poop, pee, and farts have a huge environmental impact.

When animal waste leaks into water sources, it can make them unhealthy to drink, and toxic to live in (if you're the sort of organism that lives in the water. And the various gases (like methane, nitrous oxide, and carbon dioxide) emitted by animals and their waste are a major source of global warming.

So there. It turns out that those of us who eat meat are straining the environment quite a bit.

But what about all those edible bugs? How do they fit in?

Well, a group of scientists from the Netherlands just published a report on that very thing. They compared the emissions of common meat animals to those of a variety of insects, and found that the world would probably be better off if we raised and ate bugs instead of cows and pigs.

See, insects are able to turn the food they eat into protein much more efficiently than cows and pigs, because insects' metabolisms don't constantly burn fuel to maintain a regular body temperature (like the metabolisms of cows, pigs and people do). In the end, for the amount of mass they build, insects produce less greenhouse gases than pigs, and way less than cows. The insects' production of ammonia (a source of water pollution) was also much less than cows and pigs. The long and the short of the research is that if we were to have farms raising delicious mealworms, house crickets, and locusts, we could reduce our greenhouse gas emissions significantly.

But I don't have high hopes for any of that; it's hard to imagine seeing insect-based food items on the shelves any time soon. Here's hoping though, right?

Dec
16
2010

I was not even a thought in the 1970s, but I've heard it was a pretty good time to be a rock. People took you as their pets, and I'll bet Professor Lawrence Edwards had a couple Pet Rocks back in the day.

Family Portrait: From left to right: Momma Igneous, Baby Sedimentary, and Poppa Metamorphic.
Family Portrait: From left to right: Momma Igneous, Baby Sedimentary, and Poppa Metamorphic.Courtesy Wikimedia Commons

You see, Edwards is an isotope geochemist, which sounds just about as awesome as it is: he studies the teeny tiny radioactive elements in rocks. These elements help Edwards date rocks. No, that doesn't mean he wines and dines them. Quite the opposite! Edwards developed a sneaky way to figure out how old they are (and let me tell you, nobody wants to be reminded of their age when they're hundreds of thousands of years old).

Edwards' method is similar to carbon-14 dating, only way better. In certain kinds of rocks, Edwards can date rocks as old as 500,000 years compared to carbon-14's measly 50,000 years. That's a whole order of magnitude older! Here's how Edwards' method works: Scientists know that half of any quantity of uranium decays into thorium every 245,500 years. Edwards uses a mass spectrometer to measure the ratio of two radioactive elements -- uranium and thorium. Then, Edwards compares the present ratio of uranium to thorium to what scientists would expect from the half-life decay and bada-bing, bada-boom! Simply genius.

Why am I getting all hyped up over some old rocks? Because they're helping us learn more about ourselves and the tenuous place we hold in this world. For example, Edwards has used his super-special method to trace the strength of monsoon seasons in China. Turns out weak monsoon seasons correlate with the fall of several historical dynasties, and strong monsoons correlate with climatic warming in Europe. Edwards calls this work,

"the best-dated climate record covering this time period."

Nov
12
2010

a paver, or stone tile, representing ocean microbes
a paver, or stone tile, representing ocean microbesCourtesy B. Mayer
Who hasn’t heard about the very great scientific and social problems of global warming and ocean acidification? As microbiologist Louis Pasteur noted more than a century ago, “The very great is accomplished by the very small.” Part of the answer to these very great problems can be accomplished by understanding the very small: ocean microbes, living things that are less than a hundredth of the thickness of a human hair.

Our effort to understand the very small in the ocean has just taken a big step. C-MORE Hale (Hawaiian language for “house,” pronounced hah-lay) was officially dedicated in a ceremony that took place on October 25, 2010. C-MORE, or the Center for Microbial Oceanography: Research & Education, is all about studying ocean microbes. Scientists at C-MORE are looking into microorganisms at the genomic, DNA level and all the way up to the biome level where microbes recycle elements in ocean ecosystems.

Headquartered at the University of Hawai`i, C-MORE’s interdisciplinary team includes scientists, engineers and educators from the Massachusetts Institute of Technology, Monterey Bay Aquarium Research Institute, Oregon State University, University of California – Santa Cruz and Woods Hole Oceanographic Institution. As a National Science Foundation center, C-MORE is a dynamic “think tank” community of researchers, educators and students from a variety of cultural backgrounds, including native Hawaiian and other Pacific Islander.

C-MORE Hale, with stone tiles
C-MORE Hale, with stone tilesCourtesy B. Mayer
C-MORE Hale will be equipped completely and ready for scientists to put on their lab coats and get to work in January 2011. For now, e komo mai! (welcome!) Imagine yourself walking along this sidewalk leading to C-MORE Hale. Stop for a moment to look at the round pavers; they depict ocean microbes first discovered by 19th century zoologists on the worldwide HMS Challenger expedition. Step past these unique designs and take a tour of the brand-new building!

This is us
This is usCourtesy jadensmommy
Seriously, America, you really don't know much about how climate works. Like, most of us get an F when it comes to climate. Check it out: 52 Percent of Americans Flunk Climate 101. And here's a .pdf of the quiz. Test yourself, and tell us in the comments how you did!

Sep
03
2010

I've been thinking about cars a lot lately as I reflect on sustainable technologies and wait for the Th!nk to be sold in America. Even though cars aren't the worst offender when it comes to global warming, their impact is significant and I itch for the kinds of innovation that will reinvent the way we live again. So I hope you enjoy coming along on this little thought journey.

The Doble: A rad steam car that could have made steam the power of choice.
The Doble: A rad steam car that could have made steam the power of choice.Courtesy Norbert Schnitzler

I wasn't much interested in cars (beyond them getting me to work) until I had to research the history of automobiles for an exhibit. What got my attention was the process of innovation. In the late 1800s, there were three major technologies vying for supremacy: steam, electricity, and internal combustion.

The Detroit Electric: Seeing this ad and reading about new EVs makes me feel like I'm in a time warp.
The Detroit Electric: Seeing this ad and reading about new EVs makes me feel like I'm in a time warp.Courtesy Detroit Electric

At first, steam did best because it provided a lot of power. But steam cars took a long time to start and had to be refilled often. Ladies tended to prefer electric cars like the Detroit Electric because they were clean and silent, though they didn't go very fast, very far, or have a lot of torque. Going uphill was a pain. Early internal combustion cars were dirty and smelly, and starting one could really mess up your arm if it kicked back.

Hundreds of upstart companies created models using these three technologies with a variety of designs. Innovation was rampant. Nobody knew what a car looked like because it didn't exist before. Early cars mimicked buggies until it became clear that lowering the body on the wheels was more stable. All different kinds of designs were tried out, and companies came and went in the blink of an eye.

At first, there wasn't even a standard steering mechanism--some early cars used a tiller rather than a wheel. People could even buy engines and build their own cars at home. Over time, strong designs supported stable companies that stayed in business as others failed. It was a time of fast-paced innovation in America and other nations, and that was so exciting to think about as I researched. It sparked my imagination about our future.

The Model T: This car was available to the masses and was sold all over the world.
The Model T: This car was available to the masses and was sold all over the world.Courtesy Utah State Historical Society

I also felt a little nostalgic--steam and electric still have their advantages over internal combustion (IC). The reason IC engines became the dominant technology is that Henry Ford began mass-producing the Model T on a motorized assembly line in 1913. Although it wasn't the first mass-produced car in the US as is commonly believed (the 1901 Curved Dash Oldsmobile holds that title), the IC-driven Model T was affordable and you could buy most of the replacement parts at a hardware store.

Then in 1919, the Model T acquired one other asset--the electric starter. The starter took the danger out of starting IC engines, thereby removing one of the major setbacks of gasoline. These advantages helped cement internal combustion as the leading automotive technology, as well as establishing the success of the steering wheel.

But my nostalgia makes me wonder--what if the electric starter hadn't come around? What if Ford had made electric or steam vehicles? What if battery storage had made better progress? What would we be driving today? I think we could easily have built our transportation infrastructure to support any of those technologies.

The Citicar: I dig this little car.
The Citicar: I dig this little car.Courtesy Austinev.org

When the electric Citicar was built in the 1970s in response to the oil crisis, the company essentially started where electric cars left off in the 1920s. Part of what is taking electrics so long to catch on now is that we're having to re-invent the wheel so to speak. But I don't think that means we should lose heart. If we had spent the last 90 years working on electric vehicles, electric cars might well be running circles around internal combustion engines.

The same could be said for steam. In fact, a little known car called the Doble started nearly as quickly and easily as an IC car and could go farther before refilling, but in addition to bad management in the company, IC had already taken a strong lead by the time Dobles appeared on the market.

Far from being disappointing, my nostalgia makes me hopeful that we can return to that state of openness and innovation--that we can build on electric and other technologies to develop not just a replacement for internal combustion, but something better. When I sit with my grandchildren someday, I want to tell them the amazing story of how we avoided a crisis not by sacrifice but by being so gosh darn creative. I want to see something so cool that it makes gasoline a quaint throwback to an earlier era. And I want to see it happen for agriculture, power plants, and the economy, too.

What do you think? Is it too tall an order? Or can we invent our way to a better world? Got any ideas for how to do it?

This cool project, Climateprediction.net, allows you to help with climate research. The site links to a program called Boinc, which allows scientists to use your spare computing power for their research projects. While the project is running, you can watch visualizations of the research as it takes place. In fact, you can help with all kinds of projects--as many as you want.

If you decide to try it, please join our team. We'll see if SMM fans can become one of the top contributors!

The Extreme Ice Survey is a really fascinating project that documents melting glaciers using time-lapse photography. Check out their videos--the changes they've documented in just a few years are a bit scary!
(P.S. It's also a great complement to our current photo exhibit Double Exposure.)

Jul
07
2010

Questions in the Clouds
A recent article in Scientific American described a study in which a few scientists interviewed 14 of their colleagues specializing in climate change to make predictions about three possible future scenarios: low, medium, and high degrees of global warming. The climate scientists were also asked to predict when Earth's climate might reach a tipping point and change so drastically that humans find it difficult to survive. As part of their response, they drew attention to factors that added caveats to their predictions. One of the biggest questions: what will the clouds do?

Low-level clouds are tricksy: Studies show that these low-level clouds, called stratocumulus, cause climate researchers to squeeze their stress balls.
Low-level clouds are tricksy: Studies show that these low-level clouds, called stratocumulus, cause climate researchers to squeeze their stress balls.Courtesy Benutzer:LivingShadow, Wikimedia Commons

As the climate changes, the atmosphere's behavior changes, too--making predictions difficult. Clouds are interesting characters because they both reflect sunlight and absorb it. Different types of clouds both reflect and absorb in different proportions, but their behavior also changes with the temperature, making them difficult to model. CMMAP is one organization working to improve cloud representations in models of Earth's climate. (And their website is loaded with great information about clouds!)

Since scientists began modeling climate change, there have been many ideas about how clouds will impact global warming. But they faced difficulties because many of the same questions asked about clouds in the 1950s remain unanswered today. Some researchers thought that low-level clouds would reflect more sunlight on warm days, thereby slowing global warming in its tracks.

Cumulonimbus: Vertical growth ain't no joke.
Cumulonimbus: Vertical growth ain't no joke.Courtesy Simon Eugster, Wikimedia Commons

Cloudy Answers
But research at NASA has shown that in general, low-level clouds reflect more sunlight on cold days and less sunlight on warm days. Further, as the oceans warm, low-level clouds dissipate. This had led scientists to predict that warming would initiate a positive-feedback cycle, whereby as the climate warmed, low-level clouds would dissipate and spur on further warming.

However, the low-level clouds are thought to be balanced out by clouds with vertical growth, which may expand and reflect more sun on warm days. Researchers think that these vertical clouds could mitigate some or all of the effects of clouds' behavior on global warming. Of course, it's important to keep in mind that scientists are still only beginning to unravel the mysteries of clouds and further research will be essential to create accurate models of their behavior.

Noctilucent: "Why you gotta be all up in my grill with your carbon, yo?"
Noctilucent: "Why you gotta be all up in my grill with your carbon, yo?"Courtesy Hrald, Wikimedia Commons

Signs from Above
Another type of cloud is important in climate change discussions as an indicator of global warming rather than an influence on climate: noctilucent clouds. These clouds occur higher in the atmosphere than any other. They used to be visible only from latitudes near the poles, but began appearing closer to the equator in recent years. Because noctilucent clouds can only form in very cold temperatures, their presence at lower latitudes indicates cooler temperatures high in the atmosphere than before. Researchers think that these cooler temperatures are caused by global warming--that phenomenon creates warmer temperatures near the surface by reflecting heat emitted by the surface back toward the surface. Before global warming, this heat would have escaped to higher areas of the atmosphere to warm them, making the formation of noctilucent clouds impossible at lower latitudes.

Of course, global warming isn't the only way we impact clouds…

Contrails: Not only do they give off greenhouse gases, jets mess with the clouds. Jerks.
Contrails: Not only do they give off greenhouse gases, jets mess with the clouds. Jerks.Courtesy NASA, Wikimedia Commons

Jets and Clouds
As if natural clouds weren't enough of a question mark, jets throw a monkey wrench in climate models, too. The contrails they leave behind can create pseudo clouds that alter temperatures by lowering daytime highs and decreasing nighttime lows because of the ways they reflect and absorb radiation. Jets also punch holes in natural clouds and cause immediate impacts on the weather.

And just 'cause I can't get enough, here's more cloud info.