Stories tagged crystals

This video was shot inside "Cueva de los Cristales" Naica - Chihuahua, Mexico 2002. Incredible crystals, larger than people were exposed when miners opened up the cavern looking for lead. The high humidity and temprature required the cameraman to wipe condensation off the lens every few seconds.

Oct
28
2008

A gypsum crystal: This crystal, less than a foot tall, can still focus a tremendous amount of chi. Think about what a 36-footer could do!
A gypsum crystal: This crystal, less than a foot tall, can still focus a tremendous amount of chi. Think about what a 36-footer could do!Courtesy Tjflex2
You heard it here first, y’all (unless you heard it somewhere else first): there’s a cave 1000 feet below the Chihuahuan Desert in Mexico, full of crystals dozens of feet long, and thousands of pounds in weight. At least one of the crystals, made of gypsum, is 36 feet long, and weighs over 55 tons. Think of all the powerful spiritual energy there!

The massive crystals grew so large thanks to the 138-degree, mineral-rich water that used to flow through the cave. This mineral soup was perfect for making mega crystals, but lead to the deaths of dozens of New Age crystal prospectors and treasure seeking paladins. (This is an assumption based on my somewhat limited knowledge of crystals and caves.)

The caves were uncovered by miners excavating a new tunnel for a lead and silver mine in the Naica mountain. This happened back in 2000, but I only read about it today, because a story on it will appear (or appears) in the November issue of National Geographic. (Check out those links, by the way—they have pictures, and the caves do look awesome.)

Feb
05
2008

Nano (not!): Built for the 1958 Brussels World's Fair, this model of a body-centred cubic crystal is similar to the nano crystal created with DNA except it is magnified 165 billion times.
Nano (not!): Built for the 1958 Brussels World's Fair, this model of a body-centred cubic crystal is similar to the nano crystal created with DNA except it is magnified 165 billion times.Courtesy John Kerno

First step toward three-dimensional catalytic, magnetic, and/or optical nanomaterials

Assembling structures that are 1000 times smaller than a human hair is difficult. One technique that works is known as "self assembly". A random mixture of microscopic parts can be coaxed into assembling spontaneously into a desired structure by attaching appropriate segments of DNA to various parts. Complementary DNA strands want to "pair up". This is how nano structures are assembled in living organisms.

"researchers at the U.S. Department of Energy's Brookhaven National Laboratory have for the first time used DNA to guide the creation of three-dimensional, ordered, crystalline structures of nanoparticles.

Nanomaterials: Golden handshake

The team from Brookhaven and another group from Northwestern University in Evanston, US, both started with tiny spheres of gold around 10 nanometres across, and attached short strands of DNA. By varying the length of the DNA strands, their flexibility,and the types of sticky ends, they are working toward reliably binding them together in particular ways. This is the first step toward building three-dimensional catalytic, magnetic, and/or optical nanomaterials.

Sources:

May
08
2006


10 Carat Diamond: Credit: Carnegie Institution This 5-carat diamond was laser-cut from a 10-carat single crystal produced by high-growth rate CVD.

If a small diamond is placed in an environment with just the right pressure, temperature, and an atmosphere rich in vaporized carbon, the carbon vapor will start attaching to the surfaces of the "seed" diamond. Layer by layer the diamond will get bigger. Scientists think that growing 300 carat diamonds (one inch) will soon be possible.

Researchers at the Carnegie Institution of Washington, D.C. have produced 10-carat, half-inch thick single-crystal diamonds at rapid growth rates (100 micrometers per hour) using a chemical vapor deposition (CVD) process. The size is approximately five times that of commercially available diamonds produced by the standard high-pressure/high-temperature (HPHT) method and other CVD techniques.