Stories tagged electric cars

Oct
11
2010

I don't know: I just assumed that a stupid car would have its tongue hanging out. Like my dog.
I don't know: I just assumed that a stupid car would have its tongue hanging out. Like my dog.Courtesy IFCAR
We talk about alternative fuels and energy use and transportation pretty often on Science Buzz, so when news about the Chevy's upcoming car, the "Volt," and it's 230 mpg efficiency, came out last year, I thought that was pretty neat. (Admittedly, I was also sarcastic about it's price, but whatevs.)

Well, car magazines are finally getting a look at the Volt, and they're finding that its mileage is way less than 230 mpg. Like way, way less. 30 - 40 mpg, maybe. Also, it doesn't work how they said it would. It's more like a plug in hybrid car than an electric car with a gas generator, and once its low-range battery runs down, it's not a very good hybrid. But I guess it's still an intermediate step to more efficient transportation*. Just kind of a disappointing one.

*Almost a third of the energy we use in this country goes to transportation, and the vast majority of that is from non-renewable sources, so improving efficiency in this sector is a big deal.

Sep
03
2010

I've been thinking about cars a lot lately as I reflect on sustainable technologies and wait for the Th!nk to be sold in America. Even though cars aren't the worst offender when it comes to global warming, their impact is significant and I itch for the kinds of innovation that will reinvent the way we live again. So I hope you enjoy coming along on this little thought journey.

The Doble: A rad steam car that could have made steam the power of choice.
The Doble: A rad steam car that could have made steam the power of choice.Courtesy Norbert Schnitzler

I wasn't much interested in cars (beyond them getting me to work) until I had to research the history of automobiles for an exhibit. What got my attention was the process of innovation. In the late 1800s, there were three major technologies vying for supremacy: steam, electricity, and internal combustion.

The Detroit Electric: Seeing this ad and reading about new EVs makes me feel like I'm in a time warp.
The Detroit Electric: Seeing this ad and reading about new EVs makes me feel like I'm in a time warp.Courtesy Detroit Electric

At first, steam did best because it provided a lot of power. But steam cars took a long time to start and had to be refilled often. Ladies tended to prefer electric cars like the Detroit Electric because they were clean and silent, though they didn't go very fast, very far, or have a lot of torque. Going uphill was a pain. Early internal combustion cars were dirty and smelly, and starting one could really mess up your arm if it kicked back.

Hundreds of upstart companies created models using these three technologies with a variety of designs. Innovation was rampant. Nobody knew what a car looked like because it didn't exist before. Early cars mimicked buggies until it became clear that lowering the body on the wheels was more stable. All different kinds of designs were tried out, and companies came and went in the blink of an eye.

At first, there wasn't even a standard steering mechanism--some early cars used a tiller rather than a wheel. People could even buy engines and build their own cars at home. Over time, strong designs supported stable companies that stayed in business as others failed. It was a time of fast-paced innovation in America and other nations, and that was so exciting to think about as I researched. It sparked my imagination about our future.

The Model T: This car was available to the masses and was sold all over the world.
The Model T: This car was available to the masses and was sold all over the world.Courtesy Utah State Historical Society

I also felt a little nostalgic--steam and electric still have their advantages over internal combustion (IC). The reason IC engines became the dominant technology is that Henry Ford began mass-producing the Model T on a motorized assembly line in 1913. Although it wasn't the first mass-produced car in the US as is commonly believed (the 1901 Curved Dash Oldsmobile holds that title), the IC-driven Model T was affordable and you could buy most of the replacement parts at a hardware store.

Then in 1919, the Model T acquired one other asset--the electric starter. The starter took the danger out of starting IC engines, thereby removing one of the major setbacks of gasoline. These advantages helped cement internal combustion as the leading automotive technology, as well as establishing the success of the steering wheel.

But my nostalgia makes me wonder--what if the electric starter hadn't come around? What if Ford had made electric or steam vehicles? What if battery storage had made better progress? What would we be driving today? I think we could easily have built our transportation infrastructure to support any of those technologies.

The Citicar: I dig this little car.
The Citicar: I dig this little car.Courtesy Austinev.org

When the electric Citicar was built in the 1970s in response to the oil crisis, the company essentially started where electric cars left off in the 1920s. Part of what is taking electrics so long to catch on now is that we're having to re-invent the wheel so to speak. But I don't think that means we should lose heart. If we had spent the last 90 years working on electric vehicles, electric cars might well be running circles around internal combustion engines.

The same could be said for steam. In fact, a little known car called the Doble started nearly as quickly and easily as an IC car and could go farther before refilling, but in addition to bad management in the company, IC had already taken a strong lead by the time Dobles appeared on the market.

Far from being disappointing, my nostalgia makes me hopeful that we can return to that state of openness and innovation--that we can build on electric and other technologies to develop not just a replacement for internal combustion, but something better. When I sit with my grandchildren someday, I want to tell them the amazing story of how we avoided a crisis not by sacrifice but by being so gosh darn creative. I want to see something so cool that it makes gasoline a quaint throwback to an earlier era. And I want to see it happen for agriculture, power plants, and the economy, too.

What do you think? Is it too tall an order? Or can we invent our way to a better world? Got any ideas for how to do it?

Nov
20
2007

Aptera Typ-1 electric vehicle
Aptera Typ-1 electric vehicleCourtesy Aptera Motors, Inc.
Aptera Motors, Inc. is now taking reservations (California only) for either its 300 mpg hybrid or its all electric vehicles. The electric version of the Aptera typ-1 is slated for delivery in 2008 with the hybrid model to follow. The all-electric model has a range of 120 miles. The plug-in series hybrid has achieved more than 300 miles per gallon with a range of more than 600 miles.

The Aptera Typ-1 is loaded with safety features.

  • Driver and passenger side airbags
  • Energy absorbing and impact deflecting passenger safety cell
  • Advanced drive computer with GPS navigation, CD/MP3/DVD player, XM
  • Large rear view camera and complete vehicle diagnostic system
  • LED interior and exterior lighting for maximum energy efficiency
  • An RFID (Radio Frequency ID) ? an automatic identification method so a driver never has to pull out their keys to enter or start their Aptera
  • USB port for powering a laptop or charging an MP3 player and other mobile devices

Aptera videos are on You Tube

Click this to see more Aptera electric vehicle You Tube videos.

Sources: Jalopnik.com/cars and Aptera.com/details

Nov
08
2007

We couldn’t get the rights to a photo of a nano-ultra-capacitor, so here’s a picture of some cute baby ducks.: Photo by Mattay from Flickr.com
We couldn’t get the rights to a photo of a nano-ultra-capacitor, so here’s a picture of some cute baby ducks.: Photo by Mattay from Flickr.com

Many devices need to use stored energy. The most common storage devices are batteries and capacitors.

Batteries produce energy through chemical reactions in their mass, and release it at a slow and steady rate. Batteries can store a lot of energy, but they’re difficult to recharge.

Capacitors store energy on their surface, release it all in a burst, and then can be easily recharged. Many devices use capacitors – cellphones, computer memory, even some trucks and buses. But the amount of energy capacitors can store is limited – only one-millionth the power in a battery of the same size.

But perhaps not for long. A team of researchers at MIT is using nanotechnology to improve the storage capacity of capacitors. Working with materials just a few atoms thick, they can build very complicated shapes with lots of surface area to hold electrical charge. Test show these devices can hold up to 50% of the energy a battery holds, and yet still maintain the advantages of quick release and easy recharge. The researchers predict this next generation of capacitors could someday help power electric cars or store energy from renewable sources.