Stories tagged model

It's Friday, and y'all know what that means. Yup, time for a new Science Friday video.

Science Friday
Science FridayCourtesy Science Friday

This week,

"Many mammals have whiskers but not all whisk. Cats don't. Rats do. To whisk, rats use special muscles in their face to brush their whiskers against an object. From the bending bristles, rats seem to be able to decode an object's shape and texture and Mitra Hartmann, engineer at Northwestern University, wants to understand how. This week, Hartmann and colleagues published a 3D whisker model, which she says will help quantify what information the brain receives from a whisk."

Our very own JGordon drops some knowledge...

May
01
2009

A research group led by Dirk Brockmann at Northwestern University has created a computer model that predicts the spread of the 2009 H1N1 influenza virus in the US. (It uses a complex set of mathematical equations to describe the movement of people and virus.)

How can you track and predict the movement of something so small?: Follow the money, of course! (This is a colorized negative stained transmission electron micrograph (TEM) showing some of the ultrastructural morphology of the A/CA/4/09 swine flu virus. Got that? Good.
How can you track and predict the movement of something so small?: Follow the money, of course! (This is a colorized negative stained transmission electron micrograph (TEM) showing some of the ultrastructural morphology of the A/CA/4/09 swine flu virus. Got that? Good.Courtesy CDC/C.S. Goldsmith and A. Balish

(Brockmann was a guest on Minnesota Public Radio's Midmorning show today, and you can listen to it online.)

The good news is that, based on what we know now, and assuming that no one takes any preventive measures, we could expect to see some 1,700 cases of swine flu in the next four weeks. Because of the preventive measures being taken wherever a suspected case of H1N1 flu has popped up, we should actually see fewer cases. (You can see Brockmann's models here.) That's lousy if you're one of the folks who picks up the virus, but not a devastating number of cases. Of course, this is a rapidly developing, fluid situation, and things may change. Still, tools like Brockmann's model help to ensure that emergency supplies and other resources get to the places likely to need them most before they're needed.

Professor's Computer Simulations Show Worst-Case Swine Flu Scenario from Northwestern News on Vimeo.

Don't have faith in computer models? Well, a second research group at Indiana University is using another model, with different equations, and getting very similar results. That's a pretty good indication that the predictions are reliable.

You might remember Brockmann from a 2006 study that used data from WheresGeorge.com, a site that allows users to enter the serial numbers from their dollar bills in order to see where they go, to predict the probability of a given bill remaining within a 10km radius over time. That gave him a very good picture of human mobility, reflecting daily commuting traffic, intermediate traffic, and long-distance air travel, all of which help to model how a disease could spread.

If your answer is "Nothing, yet," then you might consider stopping by the museum.

Minnesota's Water Resources: Impacts of Climate Change
Dr. Lucinda Johnson, National Resources Research Institute, University of Minnesota-Duluth
Thursday, April 9, 2009
7 - 8:30 pm in the Auditorium

Over the past 150 years, Minnesota's climate has become increasingly warmer, wetter, and variable, resulting in undeniable ecological impacts. For example, more recent changes in precipitation patterns combined with urban expansion and wetland losses have resulted in an increase in the frequency and intensity of flooding in parts of Minnesota. Learn about exciting new research which will develop a prediction model for future climate changes specific to Minnesota, and discover its potential economic and civic impact.

Check it out.